

Game Design Document
Color Quest

Color Quest-GDD3-March 17, 2025
Version 3.0.0

Author
Ardella Malinda Sarastri

Game Product Owner / Designer
2010511021@mahasiswa.upnvj.ac.id

Universitas Pembangunan Nasional “Veteran” Jakarta
2024-2025

DOCUMENT INFORMATION

This document is part of the academic final project for the development of the game "Color Quest" by

Ardella Malinda Sarastri. The content herein is intended for educational, research, and documentation

purposes only. All design decisions, system descriptions, and visual materials are based on the final

implementation of the Color Quest mobile application (version 9.0). This document may be shared with

supervisors, examiners, or academic reviewers as part of the evaluation process. Unauthorized

commercial use or modification of the game concept or its assets without proper attribution is

discouraged.

Table of Contents

1. Introduction 1

1.1 Purpose of the document 1

1.2 Project Background 1

1.3 Scope of the document 1

1.4 Related documents 1

1.5 Terms/Acronyms and Definitions 2

1.6 Risks and Assumptions 2

2. System/ Solution Overview 3

2.1 Context Diagram / Application Screen Flow / Process Flow 3

 2.1.1 Application Screen Flow 3

 2.1.2 FSM – Color Blindness Level Progression 4

 2.1.3 FSM – Gameplay Mode Transition (StageState) 5

 2.1.4 Alternative Question Handling – DifferentColor 6

 2.1.5 Fuzzy Logic Controller – Diagnosis Architecture 7

 2.1.6 Membership Function – Error Mapping 7

2.2 System Actors 8

 2.2.1 User Roles and Responsibilities / Authority Requirements 3

2.3 Dependencies and Change Impacts 8

 2.3.1 System Dependencies 8

 2.3.2 Change Impacts 8

3. Gameplay Specifications 9

3.1 Game Mode: DifferentColor 9

 3.1.1 Purpose/ Description 9

 3.1.2 Use case 9

 3.1.3 Mock-up 10

 3.1.4 Functional Requirements 10

 3.1.5 Field level specifications 10

3.2 Game Mode: SameColor 11

 3.2.1 Purpose/ Description 11

 3.2.2 Use case 11

 3.2.3 Mock-up 11

 3.2.4 Functional Requirements 11

 3.2.5 Field level specifications 12

3.3 Game Mode: SortColor 13

 3.3.1 Purpose/ Description 13

 3.3.2 Use case 13

 3.3.3 Mock-up 13

 3.3.4 Functional Requirements 13

 3.3.5 Field level specifications 14

3.4 FSM – Level Transition 15

 3.4.1 Purpose/ Description 15

 3.4.2 Transition Logic 15

 3.4.3 FSM Diagram Reference 15

 3.4.4 FSM Code Snippet – Level Transition (ColorBlindLevel) 15

3.5 FSM – Stage Transition 17

 3.5.1 Purpose/ Description 17

 3.5.2 Transition Logic 17

 3.5.3 FSM Diagram Reference 17

 3.5.4 FSM Code Snippet – Stage Transition (StageState) 17

3.6 Fuzzy Logic Evaluation 19

 3.6.1 Purpose/ Description 19

 3.6.2 Inputs and Fuzzification 19

 3.6.3 Inference Rules 19

 3.6.4 Defuzzification 20

 3.6.5 Output Diagnosis 20

 3.6.6 Code Reference 20

4. User Interface Design 21

4.1 UI Components & Navigation Structure 21

4.2 Visual & Audio Elements 21

4.3 UI Flow (Sitemap) 21

5. Other System Requirements/ Non-Functional Requirements 23

5.1 UI Components & Navigation Structure 23

5.2 Visual & Audio Elements 23

 5.2.1 Level FSM Diagram 23

 5.2.2 Stage FSM Diagram 23

 5.2.3 Alternative Question Handling 23

5.3 Fuzzy Logic Evaluation Architecture 24

5.4 Membership Functions 24

6. Testing Strategy & Feedback 25

6.1 Testing Types 25

6.2 Unit Test Coverage 25

6.3 Level FSM Diagram 25

6.4 Beta Testing Feedback 25

6.5 Diagnostic Validation 26

6.6 Known Limitations 26

7. Release Plan & Wrap-Up 27

7.1 Version Information 27

7.2 Post-Release Activities 27

8. Appendix 28

8.1 Author Responsibility 28

8.2 Acknowledgements 28

8.3 Approval Record 28

1. Introduction

1.1. Purpose of the document
This document serves as the Game Design Specification Document for the development of the

mobile game Color Quest, an educational game designed to help screen color vision deficiency

(color blindness) in early childhood. The document outlines the functional behavior, game

mechanics, interface structure, and evaluation system used in the final version of Color Quest

(v9.0). It ensures traceability between game features and design decisions, while providing a

clear guideline for future enhancement, testing, and evaluation.

1.2. Project Background
Color blindness in children is often undetected due to limitations in traditional screening

methods. Standard tests like the Ishihara test are not engaging for children aged 4–6 years and

may not yield reliable results. To address this issue, Color Quest was developed as a gamified

solution to engage children through playful interaction while enabling initial detection of

potential color vision deficiency (Protan, Deutan, Tritan). The game uses a dynamic difficulty

model via Finite State Machine (FSM), and performs diagnostic estimation using Fuzzy Logic

analysis based on user input and gameplay results.

The project was carried out as part of an academic thesis at Universitas Pembangunan Nasional

“Veteran” Jakarta.

1.3. Scope of the Document
This document covers:

1. The system architecture of Color Quest version 9.0.

2. Functional game design including gameplay modes, scoring logic, FSM, and Fuzzy Logic.

3. Interface structure and visual/audio assets.

4. Testing processes including alpha and beta tests with early learners.

5. Diagrams to support gameplay logic and evaluation.

6. It excludes: clinical validation, backend server deployment, monetization, or third-party

integration features.

1.4. Related Document

Component Name (with link to the document) Description
A SKRIPSI ARDELLA Full documentation of Color

Quest development, testing,
and analysis.

B GDD v2.0 (Obsolete) Previous draft of game design,
no longer valid for current
version.

C Unity Project Files Source code and assets for
Color Quest v9.0.

1

https://drive.google.com/file/d/1KlNd4aFTfSE7kIK8MmMiUSO8pOZELdU-/view?usp=sharing

D Test Report (Alpha-Beta) Results and feedback from
internal testing and child
playtesting.

1.5. Terms and Acronyms

Term/Acronym Definition Description

FSM Finite State Machine A state-based logic system used
to manage game flow and level
transitions.

Fuzzy Logic Approximate reasoning system Used to estimate the likelihood
of color blindness from
gameplay scores.

Protan / Deutan /
Tritan

Color vision types Represent red-, green-, and
blue-yellow-based deficiencies,
respectively.

CVD Color Vision Deficiency General term for difficulty in
distinguishing colors.

1.6. Risks and Assumptions

1. The game is intended for early screening and does not replace clinical diagnosis.

2. Children’s interaction may be inconsistent due to attention span or external distractions.

3. Requires Android devices with basic multitouch and color-accurate screens.

4. No backend server or data sync is used – all evaluation is client-side.

5. Fuzzy Logic estimates are based on heuristic rules, not clinical trials.

2

2. System/ Solution Overview

Color Quest is a mobile educational game designed to help identify potential color vision deficiencies

(CVD) in children aged 4–6 years through engaging color-based gameplay. The system consists of three

interactive modes (Different Color, Same Color, Sort Color) and dynamically adjusts challenge difficulty

using Finite State Machine (FSM). The application evaluates gameplay responses using Fuzzy Logic to

estimate likelihood of Protan, Deutan, or Tritan color blindness. The game provides immediate results

and visual feedback without requiring internet or external servers.

Goals and Benefits:

1. Early screening of color vision issues in children.

2. More child-friendly than traditional static tests (e.g., Ishihara).

3. Encourages learning through play while collecting evaluative data.

4. Accessible on standard Android devices (offline-ready).

2.1. Context Diagram / Application Screen Flow / Process Flow

2.1.1. Application Screen Flow

This diagram illustrates the overall navigation structure within the Color Quest application.

Upon launching the app (Start), users are directed to the Main Menu, where they can

choose from the following:

1. How to Play – Displays instructions for users and guardians.

2. Main Game – Begins the core gameplay sequence, including player name input,

3

level progression, and score display.

3. History – Allows users to review previous game results

4. Exit Game – Closes the application.

This flow provides a clear overview of user access points and system navigation.

2.1.2. FSM – Color Blindness Level Progression

This state diagram represents the game’s level-based progression system. Once the game

starts, it transitions sequentially through three color vision challenge levels:

1. Protan

4

2. Deutan

3. Tritan

After each level is completed, the system evaluates the user's performance and proceeds

using NextLevel() logic. Once all levels are completed, the system computes a final

diagnosis and returns to the main menu.

2.1.3. FSM – Gameplay Mode Transition (StageState)

Within each color vision level, the game consists of three sequential mini-games:

1. DifferentColor

2. SameColor

3. SortColor

Each mode is initiated through StartStage() and transitions upon completion.

Incorrect answers in the DifferentColor mode trigger an alternate question mechanism

5

before continuing. After finishing all three modes, the system advances to the next color

vision level or final result stage.

2.1.4. Alternative Question Handling – DifferentColor

This decision-based flowchart details the internal logic for alternative questions in the

DifferentColor mode:

1. If the first answer is incorrect → display Alternative 1.

2. If the second attempt is still incorrect → display Alternative 2.

3. After the third total attempt or one correct answer, the game continues to

SameColor.

This mechanism ensures that each user is given up to two retries per stage to reduce

random guessing effects.

6

2.1.5. Fuzzy Logic Controller – Diagnosis Architecture

This block diagram illustrates the Fuzzy Logic architecture used for interpreting gameplay

results. The process includes:

1. Input : Final scores from Protan, Deutan, Tritan levels.

2. Fuzzification : Converting raw scores to membership degrees

 using triangular functions.

3. Rule Base + Aggregation : Applying IF-THEN rules to determine fuzzy

 implications.

4. Defuzzification : Producing a final crisp score (z) via weighted

 average.

The output is a diagnosis label indicating the likelihood of color vision deficiency.

2.1.6. Membership Function – Error Mapping

This graph shows the fuzzy membership functions used to evaluate error ratios from each

level:

1. Very Low (μ = 1 if score ≤ 0.2)

2. Low (peak μ = 1 at 0.45)

3. High (μ = 1 if score ≥ 0.7)

These values are essential in determining how well a player perceives each color group

and support nuanced diagnosis through Fuzzy Logic inference.

7

2.2. System Actors

2.2.1. User Roles and Responsibilities / Authority Requirements

User/Role Example
Frequency

of Use
Security/Access,
Features Used

Additional
Notes

Student
(Child Player)

Kindergarten
students
(ages 4–6) at
Happy Holy
Kids

Occasional
(1–2 sessions
per child)

Full access to gameplay
and result screen;
cannot access other
players’ history

Accompanied by
a parent or
teacher during
gameplay

Parent /
Teacher

Guardian or
kindergarten
teacher

Occasional Can view the child’s
result summary and
diagnosis; no account
or settings access

Serves as a
companion and
supervisor
during play

Developer /
Evaluator

Game
developer,
researcher,
supervisor

Frequent Full access to all
features, including
optional data logs (if
enabled)

For debugging,
testing, and
performance
analysis

2.3. Dependencies and Change Impacts

2.3.1. System Dependencies

1. Unity Engine (version 2022.3 LTS): used to develop the entire gameplay system,

 UI, and visual logic.

2. Android OS 8.0 or above: minimum supported platform for installation.

3. Fuzzy Logic & FSM Scripts: implemented in local C# scripts within the Unity

 project.

4. No external database or API: the system runs entirely offline, with no

 dependency on network connectivity or cloud-based services

2.3.2. Change Impacts

1. No impact on external systems: Color Quest is a self-contained, standalone

 mobile application with no third-party integrations.

2. However, should the system be extended in the future to include features

 such as:

a. Cloud-based history tracking

b. Multi-device synchronization

c. Online progress monitoring or reporting

then the following components would be required:

d. Backend database and API service

e. User login and account management module

f. Data authorization and encryption mechanisms

8

3. Gameplay Specifications

3.1. Game Mode: DifferentColor

3.1.1. Purpose/ Description
The "DifferentColor" mode is designed to evaluate a child’s ability to distinguish color

variations. The player must tap the circle with a different hue among a group of

similar-colored circles. This stage is crucial in screening color vision deficiencies like

Protanopia and Deuteranopia.

3.1.2. Use case

UC-01 Identify Different Color
Primary Actor(s) Player (child)
Stakeholders and

Interest
Parents, Teachers

Trigger Player taps "Main Game" from the main menu and enters a
name

Pre-conditions Game is installed, player has access to a touchscreen device

Post-conditions Player proceeds to the next stage or receives feedback on
performance

Main Success
Scenario

1. Player launches the game

2. Enters their name

3. Game current colorblindness level screen

a. Level 1 (Protan)

b. Level 2 (Deutan)

c. Level 3 (Tritan)

4. Player taps Lanjut (Continue)

5. System loads DifferentColor mode

6. System displays circle grid with 1 different color

7. Player taps a circle

a. If correct → logs the score and proceeds to

SameColor.

b. If incorrect:

i. Display Alternative Question 1

ii. If still incorrect → Display Alternative

Question 2

iii. After max 2 retries → log error,

continue to SameColor.

8. Save result for fuzzy evaluation

9. After answering correctly or exhausting attempts →

system transitions to next mode (SameColor),

continuing the gameplay loop.

9

Extensions 1. If the player selects the wrong answer on first attempt:
→ System loads Alternative Question 1

2. If the second attempt is also wrong:
→ System loads Alternative Question 2

3. After 2 failed retries or upon correct answer at any
point:
→ System proceeds to SameColor, logging total
error count.

Priority High
Special Requirements Touch input, visual accessibility

Open Questions Should scoring vary per retry? (current implementation: no)

3.1.3. Mock-up
Check on Figma

3.1.4. Functional Requirements

Spec ID Specification Description Business Rules/ Data Dependency

DC-01 Display instruction at top of
screen

Must show same text for every question

DC-02 Display color circle grid Always include 1 distinct color (hue/value
diff)

DC-03 Validate player’s touch input Record tap position and check match to
answer key

DC-04 Retry handling logic If wrong, show alternative layout (max 2
retries)

DC-05 Store result per question for
diagnosis

Connects to Fuzzy Logic input
(Protan/Deutan/etc)

3.1.5. Field level specifications

10

Field Label UI Control Editable Data Type Validation Rule Message
Instruction
Text

Label No String Always visible Static text: “Tap
the different

color”
Color Circles Touch

Area
No Color + ID One circle must

be different
(answer key)

Pulled from
color question

pool
Retry
Counter

Auto
Increment

No Integer Increase if
answer is
incorrect

Max 2 retries
allowed

Tap Action Click/Tap Yes Input Trigger Must match
correct circle to
proceed

Highlighted on
tap, triggers

retry if wrong

3.2. Game Mode: SameColor

3.2.1. Purpose/ Description
This mode evaluates the child’s ability to perceive color similarity. The system displays

colored dots in pairs. The player must tap two dots with the same color in a single round. It

is the second stage in each colorblindness level (Protan, Deutan, Tritan).

3.2.2. Use case

UC-02 Match Same Color
Primary Actor(s) Player (child)
Stakeholders and

Interest
Parents, Teachers

Trigger System loads SameColor mode after finishing DifferentColor
Pre-conditions Player has entered name and passed (or exhausted) the

DifferentColor stage
Post-conditions Player proceeds to SortColor stage
Main Success

Scenario
1. System loads SameColor level for current

ColorBlindLevel.

2. The player taps two circles.

3. The system checks color matches.

a. If correct: proceed to the next round or next

stage.

b. If incorrect: no retry, error recorded.

Extensions —
Priority High

Special Requirements Must record error if wrong selection; no retry allowed
Open Questions Should the same color always appear in the same position for

every child? (current implementation: no)

3.2.3. Mock-up
Check on Figma

3.2.4. Functional Requirements

Spec ID Specification Description Business Rules/ Data Dependency

SC-01 Load paired dots of the same
color

Dot colors must be chosen based on
colorblind level

SC-02 Allow only two taps per round Validate pair after second tap
SC-03 Validate player’s touch input CountErrorsForLevel() integrated

11

3.2.5. Field level specifications

12

Field Label UI Control Editable Data Type Validation Rule Message
Game Grid Tap Target Yes Position Max 2 taps

before submit
"Select two

circles"
Retry
Counter

Integer
View

No Integer Auto-incremen
ted if answer is
wrong

—

3.3. Game Mode: SortColor

3.3.1. Purpose/ Description
This final mode requires the player to sort colored dots from the darkest to the lightest

shade. It reinforces color differentiation and sequencing. Appears after SameColor in every

ColorBlindLevel.

3.3.2. Use case

UC-03 Sort Shades
Primary Actor(s) Player (child)
Stakeholders and

Interest
Parents, Teachers

Trigger Transition from SameColor stage
Pre-conditions Player completed SameColor stage

Post-conditions Game proceeds to evaluation result (Fuzzy) or next
ColorBlindLevel

Main Success
Scenario

1. The system loads a set of 3–5 color variants.

2. The player drags and reorders the colors from darkest

to lightest.

3. System validates order.

4. Error recorded if sequence is incorrect.

5. Proceed to the next ColorBlindLevel or show the result.

Extensions —
Priority High

Special Requirements System must evaluate based on defined hue/lightness order
Open Questions Should order validation be strict (100% match) or allow close

approximation?

3.3.3. Mock-up
Check on Figma

3.3.4. Functional Requirements

Spec ID Specification Description Business Rules/ Data Dependency

SO-01 Load set of color shades Shades determined based on colorblind
level

SO-02 Allow drag-and-drop reorder Use SortDot.cs functionality
SO-03 Validate order after confirmation

or timeout
Must integrate with CountErrorsForLevel()

13

3.3.5. Field level specifications

14

Field Label UI Control Editable Data Type Validation Rule Message
Instruction
Text

Label No String Always visible Static text: "Sort
from darkest to
lightest"

Color Dots
(Items)

Draggable
Objects

Yes Color[] +
Index

All items must
be placed in
one of the drop
slots

Shades are
dynamically
generated per
level

Drop Area /
Slots

Drop
Target

Yes Array[Position
]

Each slot must
contain one
color dot

Number of slots
= number of
items

Submit
Action

Button
(Optional)

No Action Trigger Validate order
(darkest to
lightest)

May be
triggered
automatically
after drag
complete

Retry Tracker Integer
(internal)

No Integer Incremented if
order is
incorrect

Used for fuzzy
logic evaluation
(Tritan score)

3.4. FSM – Level Transition

3.4.1. Purpose/ Description
The Level FSM (Finite State Machine) in Color Quest controls the transition between the

three diagnostic levels:

1. Protan

2. Deutan

3. Tritan

Each level represents a type of color vision deficiency test. The FSM ensures that the

player completes each level in order before reaching the final result screen.

3.4.2. Transition Logic

State Trigger / Condition Next State Description
StartGame Player taps "Start"

after name input

Protan Initial entry point
for gameplay

Protan All 3 stages
completed

Deutan Transitions only
after Different,
Same, Sort done

Deutan All 3 stages
completed

Tritan Same as above

Tritan All 3 stages
completed

ResultScreen Triggers evaluation
and diagnosis

ResultScreen Player reviews
results or exits

MainMenu Final screen before
return

3.4.3. FSM Diagram Reference
Refer to Figure 2 – Level FSM Diagram in Section 2.1

The diagram visualizes sequential level flow:
Start → Protan → Deutan → Tritan → Result

3.4.4. FSM Code Snippet – Level Transition (ColorBlindLevel)

public enum ColorBlindLevel
{

Protan,
Deutan,
Tritan,
Result

}

Location:
GameManager.cs (Top-level FSM enum used to control current diagnostic level)

15

Transition handled in:

public void NextLevel()
{
 if (colorBlindLevel == ColorBlindLevel.Protan)
 colorBlindLevel = ColorBlindLevel.Deutan;
 else if (colorBlindLevel == ColorBlindLevel.Deutan)
 colorBlindLevel = ColorBlindLevel.Tritan;
 else
 colorBlindLevel = ColorBlindLevel.Result;

 StartLevel(); // Resets stage state and triggers next
level
}

Location:
GameManager.cs
Function NextLevel() is invoked after the SortColor stage is completed.

16

3.5. FSM – Stage Transition

3.5.1. Purpose/ Description
The Stage FSM controls the sequence of mini-games within each level. It ensures the

player plays:

1. DifferentColor (with retry logic),

2. followed by SameColor,

3. and then SortColor.

This FSM runs independently inside each diagnostic level (Protan/Deutan/Tritan).

3.5.2. Transition Logic

State Trigger / Condition Next State Description
DifferentColor Player completes or

retries exhausted

SameColor Supports up to 2
alternative
questions before
proceeding

SameColor Player completes a
match attempt

SortColor No retry; proceeds
regardless of
correctness

SortColor Player completes
drag-and-drop sorting

NextLevel Moves to next
ColorBlindLevel or
Result if last level

3.5.3. FSM Diagram Reference
Refer to Figure 3 – Stage FSM Diagram in Section 2.1

The diagram shows internal stage control:
DifferentColor → SameColor → SortColor → [Loop to Next
Level]

3.5.4. FSM Code Snippet – Stage Transition (StageState)

public enum StageState
{
 DifferentColor,
 SameColor,
 SortColor
}

Transition handled in:

public void NextStage()
{

17

 if (stageState ==
StageState.DifferentColor)
 stageState = StageState.SameColor;
 else if (stageState ==
StageState.SameColor)
 stageState = StageState.SortColor;
 else
 GameManager.Instance.NextLevel();
}

Location:
StageManager.cs
Function NextStage() is called after each stage is completed, unless it's the final

one (SortColor), which then triggers NextLevel()

18

3.6. Fuzzy Logic Evaluation
3.6.1. Purpose/ Description
Color Quest uses a Fuzzy Logic system to estimate the likelihood of color vision deficiency

(CVD) in children based on their performance in three levels:

1. Protan (Red sensitivity)

2. Deutan (Green sensitivity)

3. Tritan (Blue-yellow sensitivity)

This evaluation provides a soft diagnosis using fuzzy inference rather than rigid pass/fail

thresholds, making it more adaptable to the playful, variable nature of child responses.

3.6.2. Inputs and Fuzzification
1. Each level (Protan, Deutan, Tritan) yields a score from 0.0 to 1.0

2. Scores are converted into fuzzy sets using triangular membership

functions:

a. Very Low

b. Low

c. High

3. Example:

If ProtanScore = 0.3, it belongs partially to both "Very Low" and

"Low".

// MembershipFunction.cs
public static float VeryLow(float x) => (x <= 0.2f) ? 1f
: (x >= 0.4f) ? 0f : (0.4f - x) / 0.2f;
public static float Low(float x) => (x <= 0.2f || x
>= 0.7f) ? 0f : (x <= 0.45f) ? (x - 0.2f) / 0.25f :
(0.7f - x) / 0.25f;
public static float High(float x) => (x <= 0.5f) ? 0f
: (x >= 0.7f) ? 1f : (x - 0.5f) / 0.2f;

3.6.3. Inference Rules
A set of 243 IF-THEN rules are defined to interpret combinations of Protan, Deutan,
and Tritan scores.

Example rule:

IF Protan IS Low AND Deutan IS Low AND Tritan IS Low THEN
Diagnosis IS Moderate CVD

Rule base is implemented in:

// FuzzyLogic.cs

19

private static List<FuzzyRule> rules = new
List<FuzzyRule>()
{
 new FuzzyRule("Low", "Low", "Low", 60), // example
 ...
};

3.6.4. Defuzzification
After inference, the system uses the Weighted Average method to produce a final
crisp score (z), calculated by:

// Defuzzification formula
z = Σ(w_i × z_i) / Σ(w_i)

This final score z determines the diagnosis category.

3.6.5. Output Diagnosis
After inference, the system uses the Weighted Average method to produce a final
crisp score (z), calculated by:

Z-Score Range Diagnosis Label
0–40 High Risk of Color Vision Deficiency

41–60 Moderate Risk / Potential Mixed Deficiency
61–80 Uncertain / Suggest Recheck

81–100 Likely Normal Color Vision

The result is displayed on the Result screen, accompanied by visual and verbal
feedback.

3.6.6. Code Reference
1. FuzzyLogic.cs : Main fuzzy logic processing and rule base

2. GameManager.cs : Sends scores to
FuzzyLogic.DetermineDiagnosis()

3. MembershipFunction.cs : Contains membership formulas

20

4. User Interface Design
This section outlines the visual and interactive elements of the Color Quest game, designed for young

children aged 4–6 years. The UI emphasizes simplicity, large touch targets, bright contrasting colors, and

clear visual feedback through icons and animations. Each screen is structured to guide the child

intuitively through the game with minimal reading required.

4.1. UI Components & Navigation Structure
Screen Name Description

Opening Screen Initial splash screen with logo and loading indicator.
Main Menu Contains 4 main options: Start Game, How to Play, History, Exit.
Name Entry Simple input form for child's name (one text field + start

button).
Level Intro Display current level (Protan/Deutan/Tritan) before gameplay

starts.
Game Screens Three game modes: DifferentColor, SameColor, SortColor (one

per screen).
Result Screen Displays Fuzzy Logic-based diagnosis and summary of child’s

score.
History Screen List of previous results, only if stored locally.

How to Play Illustrated explanation of gameplay using minimal text.

4.2. Visual & Audio Elements
Element Details
Mascot A cheerful character guides the user with gestures and

expressions.
Color Palette RGB base with variations adjusted for each level

(Protan/Deutan/Tritan).
Feedback UI Correct answers trigger next question

Music Background music loops calmly during menu; muted during
gameplay.

Sound Effects Tap sounds, correct/wrong chimes, voice prompts.

Result Screen Displays Fuzzy Logic-based diagnosis and summary of child’s
score.

History Screen List of previous results, only if stored locally.

How to Play Illustrated explanation of gameplay using minimal text.

4.3. UI Flow (Sitemap)
Opening Screen
 ↓
Main Menu
 ├── How to Play
 ├── Start Game
 │ ↓

21

 │ Name Entry
 │ ↓
 │ Level Intro (Protan)
 │ ↓
 │ DifferentColor
 │ ↓
 │ SameColor
 │ ↓
 │ SortColor
 │ ↓
 │ Level Intro (Deutan) → (repeat flow)
 │ ↓
 │ Level Intro (Tritan)
 │ ↓
 │ Result Screen
 └── History

UI Design Guidelines Used

1. Touch-first layout (minimum 48x48dp targets)

2. Text size: Large and bold (20pt or higher)

3. Icons: Lucid and recognizable by age 4+

4. Color: Contrast-checked; no reliance on color alone for feedback

5. Navigation: One clear action per screen, limited decision points

22

5. Diagrams And Data
 This section presents the key diagrams and data structures used in the Color Quest application. Each

diagram provides a visual representation of system flow, gameplay control, fuzzy logic evaluation, and

data processing that supports the overall functionality of the game. All referenced visuals in this section

can be found in Section 2.1 – Context Diagram, Interface Diagram, and Process Flow.

5.1. Application Screen Flow
This diagram illustrates the primary navigation structure of Color Quest. It shows how users move

through the application starting from the Opening screen to the Result screen, including optional

flows like How to Play and History.

📌 See: Figure 1 – Application Screen Flow (Section 2.1)

5.2. FSM Diagrams
The Color Quest gameplay is governed by a dual-layer Finite State Machine (FSM) structure that

ensures organized level progression and mini-game sequencing.

5.2.1. Level FSM Diagram
Controls progression between colorblind diagnostic levels in this order:

Protan → Deutan → Tritan → Result

Transition is triggered by NextLevel() once all stages in the current level are

completed.

📌 See: Figure 2 – Level FSM Diagram (Section 2.1)

5.2.2. Stage FSM Diagram
Controls the mini-game sequence within each level:

DifferentColor → SameColor → SortColor

Transitions are managed via StartStage() and NextStage() methods in

StageManager.cs.

📌 See: Figure 3 – Stage FSM Diagram (Section 2.1)

5.2.3. Alternative Question Handling
The DifferentColorstage uses a retry mechanism to reduce random guessing:

1. 1st wrong → show Alternative 1

2. 2nd wrong → show Alternative 2

3. Then continue to SameColor

📌 See: Figure 4 – Alternative Flow Diagram (Section 2.1)

23

5.3. Fuzzy Logic Evaluation Architecture
Color Quest interprets gameplay results using a fuzzy logic controller. The process follows these

steps:

1. Input: Raw scores from Protan, Deutan, Tritan

2. Fuzzification: Translates scores into membership degrees

3. Rule Evaluation: Applies IF-THEN rules

4. Defuzzification: Converts result to crisp value (z)

5. Output: Diagnosis label (e.g., High Risk, Moderate Risk, Normal)

📌 See: Figure 5 – Fuzzy Architecture Diagram (Section 2.1)

5.4. Membership Functions
Triangular membership functions are used to evaluate score quality:

Label Range Description
Very Low 0.0 – 0.4 Indicates very few errors (high accuracy)

Low 0.2 – 0.7 (peak 0.45) Intermediate error zone
High 0.5 – 1.0 Indicates many errors (low accuracy)

These functions support nuanced decision-making in the fuzzy system.

📌 See: Figure 6 – Membership Function Graph (Section 2.1)

24

6. Testing Strategy & Feedback
This section outlines the testing approach used to validate the Color Quest system, including internal

logic, user interface functionality, gameplay flow, and fuzzy evaluation accuracy. The goal is to ensure

the game is robust, age-appropriate, and delivers consistent diagnostic feedback.

6.1. Testing Types
Test Type Purpose

Unit Testing Verifies individual functions (e.g., score conversion, fuzzy
membership).

Black Box Test Ensures UI and gameplay features function correctly as
expected.

Alpha Testing Internal test among developer and academic peers to find
major bugs.

Beta Testing Real-world test with target users (children aged 4–6 in
kindergarten).

Usability Testing Observes how children interact with the game and identifies
pain points.

6.2. Unit Test Coverage
Unit tests were conducted on the following critical components:

Function Location Test Focus
ConvertToFuzzyScale() GameManager.cs Converts error count to

fuzzy input
DetermineDiagnosis() FuzzyLogic.cs Fuzzy inference and

defuzzification
CountErrorsForLevel() GameManager.cs Calculates score per

level
MembershipFunction.*() MembershipFunction.cs Validates fuzzy

membership output
All tests passed with expected results across test cases covering edge values (0.0, 0.5, 1.0).

6.3. Level FSM Diagram
The following screens and actions were tested using black-box techniques:

1. Navigation (Main Menu → Game → Result → Back)

2. Input handling (name field, taps, drag-drop)

3. Visual and audio feedback (correct/wrong)

4. Result interpretation display

No major logic bugs found. Minor alignment issues on low-resolution screens were corrected.

6.4. Beta Testing Feedback
Test Group

25

 Children aged 4–6 from TK Happy Holy Kids Pondok Indah, with assistance from parents and

teachers.

Method

1. Individual play sessions during break time

2. Observation + guided interview

3. Rewards (e.g., snacks) given to encourage participation

Findings

Area Observation
Game Flow Easy to follow; most children understood tap and drag

mechanics
Engagement Mascot and color visuals improved attention span

Challenge Some children tapped randomly, but retry logic helped balance
Feedback Clarity Clear indicators (sound + icon) made correct answers

recognizable

6.5. Diagnostic Validation
Although the system does not provide a clinical diagnosis, it serves as an early screening tool. In

consultation with a local general practitioner (dr. Suryadi – Bekasi), the logic was confirmed to

align with basic indicators of color vision response.

6.6. Known Limitations
1. Does not detect partial/mild CVD types with high precision.

2. Relies on color perception via screen; may vary by device.

3. No cloud data sync or long-term tracking.

26

7. Release Plan & Wrap-Up
This section summarizes the deployment strategy, versioning, and completion status of the Color Quest

application. It also includes notes on post-release evaluation and next steps for potential

improvements.

7.1. Version Information
Version Status Description Date

1.0.0 Prototype
Draft

Initial gameplay logic and FSM structure,
no UI design applied

 Sep 30, 2024

2.0.0 Prototype
Update

Added fuzzy scoring logic, UI
placeholders used

 Oct 8, 2024

4.0.0 Internal Alpha Full logic implemented, basic navigation
flow, minimal UI

 Oct 30, 2024

5.0.0 UI Milestone First version with finalized child-friendly
UI and mascots

 Nov 4, 2024

7.0.0 Usability Test Version tested with children, added
retry mechanism refinement

 Dec 9, 2024

8.0.0 Pre-release
QA

Full gameplay + fuzzy evaluation tested
internally

 Jan 13, 2025

9.0.0 Final Release Stable version for PlayStore internal
testing

 Apr 30, 2025

Versions 3.0.0 and 6.0.0 were skipped during development due to internal branching or

merged improvements from previous iterations.

7.2. Post-Release Activities
1. Playstore listing preparation (if public release is planned)

2. Bug fix monitoring via observation and user feedback

3. Future version consideration:

a. Add voice-over instructions

b. Dynamic difficulty adjustment based on age

c. Cloud-based result saving for teacher/parent tracking

27

8. Appendix

8.1. Author Responsibility
Name Role(s) Responsibility

Ardella Malinda
Sarastri

Game Designer,
Developer, Analyst,

QA

Responsible for the full development cycle of
Color Quest, including gameplay design,
implementation, testing, and documentation
as part of an individual academic thesis
project.

8.2. Acknowledgements
This project was made possible with the voluntary participation of:

1. Children and teachers at TK Happy Holy Kids Pondok Indah, who assisted during

playtesting.

2. dr. Suryadi, a general practitioner, who provided external insight on the logic used for

color vision screening.

3. Academic supervisors and advisors who guided the direction of the research and

documentation.

Note: All development and implementation were completed individually by the author.

8.3. Approval Record
Prepared By Date

Ardella Malinda Sarastri Apr 15, 2025

Verified By Date
(Academic Supervisor) (TBD)

28

	1.​Introduction
	1.1.​Purpose of the document
	1.2.​Project Background
	1.3.​Scope of the Document
	1.4.​Related Document
	1.5.​Terms and Acronyms
	1.6.​Risks and Assumptions

	2.​System/ Solution Overview
	2.1.​Context Diagram / Application Screen Flow / Process Flow
	2.2.​System Actors
	2.2.1.​User Roles and Responsibilities / Authority Requirements

	2.3.​Dependencies and Change Impacts
	2.3.1.​System Dependencies
	2.3.2.​Change Impacts

	3.​Gameplay Specifications
	3.1.​Game Mode: DifferentColor
	3.1.1.​Purpose/ Description
	3.1.2.​Use case
	3.1.3.​Mock-up
	3.1.4.​Functional Requirements
	3.1.5.​Field level specifications

	3.2.​Game Mode: SameColor
	3.2.1.​Purpose/ Description
	3.2.2.​Use case
	3.2.3.​Mock-up
	3.2.4.​Functional Requirements
	3.2.5.​Field level specifications

	
	
	3.3.​Game Mode: SortColor
	3.3.1.​Purpose/ Description
	3.3.2.​Use case
	3.3.3.​Mock-up
	3.3.4.​Functional Requirements
	
	3.3.5.​Field level specifications

	
	
	3.4.​FSM – Level Transition
	3.4.1.​Purpose/ Description
	3.4.2.​Transition Logic
	3.4.3.​FSM Diagram Reference
	3.4.4.​FSM Code Snippet – Level Transition (ColorBlindLevel)

	3.5.​FSM – Stage Transition
	3.5.1.​Purpose/ Description
	3.5.2.​Transition Logic
	3.5.3.​FSM Diagram Reference
	3.5.4.​FSM Code Snippet – Stage Transition (StageState)

	3.6.​Fuzzy Logic Evaluation
	3.6.1.​Purpose/ Description
	3.6.2.​Inputs and Fuzzification
	3.6.3.​Inference Rules
	3.6.4.​Defuzzification
	3.6.5.​Output Diagnosis
	3.6.6.​Code Reference

	4.​User Interface Design
	4.1.​UI Components & Navigation Structure
	4.2.​Visual & Audio Elements
	4.3.​UI Flow (Sitemap)

	5.​Diagrams And Data
	5.1.​Application Screen Flow
	5.2.​FSM Diagrams
	5.2.1.​Level FSM Diagram
	5.2.2.​Stage FSM Diagram
	5.2.3.​Alternative Question Handling

	5.3.​Fuzzy Logic Evaluation Architecture
	5.4.​Membership Functions

	6.​Testing Strategy & Feedback
	6.1.​Testing Types
	6.2.​Unit Test Coverage
	6.3.​Level FSM Diagram
	6.4.​Beta Testing Feedback
	6.5.​Diagnostic Validation
	6.6.​Known Limitations

	7.​Release Plan & Wrap-Up
	7.1.​Version Information
	7.2.​Post-Release Activities

	8.​Appendix
	8.1.​Author Responsibility
	8.2.​Acknowledgements
	8.3.​Approval Record

