Files
python-sql-2110511008/pages/report.py
Jesselyn Mu c6f1bb970b first commit
2025-01-28 10:05:01 +07:00

295 lines
9.6 KiB
Python

import streamlit as st
import os
import mysql.connector
import pandas as pd
import json
# Fungsi untuk mendapatkan gambar sebagai base64
def get_image_as_base64(image_path):
import base64
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode("utf-8")
# Fungsi untuk koneksi ke database
def connect_to_db():
try:
conn = mysql.connector.connect(
host=st.secrets["mysql"]["host"],
user=st.secrets["mysql"]["user"],
password=st.secrets["mysql"]["password"],
database=st.secrets["mysql"]["dbname"],
port=st.secrets["mysql"]["port"]
)
return conn
except mysql.connector.Error as e:
st.error(f"Koneksi ke database gagal: {e}")
return None
# Fungsi untuk mengambil data dari tabel history_prediction
def get_all_predictions():
conn = connect_to_db()
if conn:
try:
query = """SELECT employee_id as ID_Karyawan, hasil_prediksi_klasifikasi as Hasil_Prediksi_Retensi,
hasil_prediksi_regresi as Hasil_Prediksi_Lama_Kerja, waktu_prediksi as Waktu_Prediksi
FROM history_prediction"""
df = pd.read_sql(query, conn) # Menggunakan Pandas untuk membaca data
return df
except mysql.connector.Error as e:
st.error(f"Terjadi kesalahan saat mengambil data dari database: {e}")
return pd.DataFrame() # Kembalikan DataFrame kosong jika terjadi error
finally:
conn.close()
# Fungsi untuk mengambil data dari tabel shap_pred_result
def get_shap_top_features():
conn = connect_to_db()
if conn:
try:
query = "SELECT employee_id as ID_Karyawan, shap_values FROM shap_pred_result"
df = pd.read_sql(query, conn)
# Ekstraksi dan format ulang shap_values
result = []
for _, row in df.iterrows():
employee_id = row['ID_Karyawan']
shap_values = json.loads(row['shap_values'])
# Pastikan nilai SHAP berupa angka tunggal, jika list maka ambil rata-rata
normalized_shap_values = {
feature: (sum(value) / len(value) if isinstance(value, list) else value)
for feature, value in shap_values.items()
}
# Ambil 5 fitur dengan SHAP value tertinggi (absolut)
top_features = sorted(
normalized_shap_values.items(),
key=lambda x: abs(x[1]),
reverse=True
)[:5]
# Buat format tabel baru
formatted_row = {
"ID_Karyawan": employee_id
}
for i, (feature, value) in enumerate(top_features, start=1):
formatted_row[f"Nama_Fitur_{i}"] = feature
formatted_row[f"Besar_Value_{i}"] = value
result.append(formatted_row)
# Konversi ke DataFrame
formatted_df = pd.DataFrame(result)
return formatted_df
except mysql.connector.Error as e:
st.error(f"Terjadi kesalahan saat mengambil data: {e}")
return pd.DataFrame()
finally:
conn.close()
# Fungsi untuk menampilkan navbar
def navbar():
current_page = st.session_state.get("page", "Home")
logo_path = os.path.join(os.path.dirname(__file__), "../asset/logo.png")
# Cek status login
if 'logged_in' in st.session_state and st.session_state['logged_in']:
login_button_text = "Logout"
login_button_link = "?page=Login&logout=true" # Tambahkan parameter logout
else:
login_button_text = "Logout"
login_button_link = "?page=Login"
st.markdown(
f"""
<style>
.navbar {{
display: flex;
align-items: center;
justify-content: space-between;
padding: 10px 20px;
font-family: 'Poppins', sans-serif;
margin-top: 20px; /* Hilangkan jarak atas */
background-color: #D0EEFF; /* Background navbar */
border-radius: 15px; /* Membulatkan sudut navbar */
}}
.navbar .logo {{
display: flex;
align-items: center;
}}
.navbar .logo img {{
height: 40px;
margin-right: 10px;
}}
.navbar .nav-links {{
display: flex;
gap: 60px;
}}
.navbar .nav-links a {{
color: black;
text-decoration: none;
font-size: 16px;
font-weight: bold;
}}
.navbar .nav-links a:hover {{
color: royalblue;
}}
.navbar .nav-links a.active {{
color: #264CBE; /* Warna saat aktif */
text-decoration: underline; /* Garis bawah saat aktif */
}}
.navbar .login-button {{
background-color: #264CBE;
color: white;
border: none;
padding: 8px 15px;
border-radius: 5px;
font-size: 16px;
font-weight: bold;
cursor: pointer;
text-decoration: none;
}}
.navbar .login-button:hover {{
background-color: white;
color: #264CBE;
}}
</style>
<div class="navbar">
<div class="logo">
<img src="data:image/png;base64,{get_image_as_base64(logo_path)}" alt="Logo">
</div>
<div class="nav-links">
<a href="?page=Prediksi" class="{ 'active' if st.session_state.page == 'Prediksi' else '' }">Prediksi</a>
<a href="?page=exploration" class="{ 'active' if st.session_state.page == 'exploration' else '' }">Dashboard</a>
<a href="?page=report" class="{ 'active' if st.session_state.page == 'report' else '' }">Laporan</a>
</div>
<a class="login-button" href="{login_button_link}">{login_button_text}</a>
</div>
""",
unsafe_allow_html=True,
)
def show_report():
# Tampilkan navbar
navbar()
st.markdown("""
<style>
.stDownloadButton > button {
background-color: #264CBE;
color: white;
font-family: 'Poppins', sans-serif;
font-size: 16px;
font-weight: 600;
border: none;
border-radius: 5px;
padding: 10px;
cursor: pointer;
margin-top: 20px;
width: 100%;
}
.stDownloadButton > button:hover {
background-color: #ffffff;
color: #264CBE;
}
/* Footer */
.footer {
width: 100%;
background-color: #D0EEFF;
padding: 20px !important;
text-align: center;
font-family: 'Poppins', sans-serif;
border-radius: 10px;
margin-top: 50px !important;
}
.footer p {
margin: 5px 0;
font-size: 14px;
color: #333333;
}
</style>
""", unsafe_allow_html=True)
# Konten halaman Laporan
st.markdown(
"""
<link href="https://fonts.googleapis.com/css2?family=Poppins:wght@400;600&display=swap" rel="stylesheet">
<h3 style="text-align: center; font-family: 'Poppins', sans-serif;">
Halaman Laporan
</h3>
""", unsafe_allow_html=True
)
# Menu dropdown
menu_option = st.selectbox(
"Pilih data yang ingin ditampilkan:",
["History Prediksi", "History SHAP Values"]
)
if menu_option == "History Prediksi":
st.markdown(
"""
<h5 style="text-align: center; font-family: 'Poppins', sans-serif;">
Tabel Histori Prediksi
</h5>
""", unsafe_allow_html=True
)
# Ambil data dari tabel history_prediction
df = get_all_predictions()
if not df.empty:
# Tampilkan data dalam bentuk tabel
st.dataframe(df)
# Tombol untuk mendownload CSV
csv = df.to_csv(index=False) # Konversi DataFrame ke CSV tanpa indeks
st.download_button(
label="Download Tabel sebagai CSV",
data=csv,
file_name="history_prediction.csv",
mime="text/csv",
)
else:
st.write("Tidak ada data yang tersedia di tabel history_prediction.")
elif menu_option == "History SHAP Values":
st.markdown(
"""
<h5 style="text-align: center; font-family: 'Poppins', sans-serif;">
Tabel Histori SHAP Values
</h5>
""", unsafe_allow_html=True
)
# Ambil data dari tabel shap_pred_result
df = get_shap_top_features()
if not df.empty:
# Tampilkan data dalam bentuk tabel
st.dataframe(df)
# Tombol untuk mendownload CSV
csv = df.to_csv(index=False) # Konversi DataFrame ke CSV tanpa indeks
st.download_button(
label="Download Tabel sebagai CSV",
data=csv,
file_name="shap_pred_result.csv",
mime="text/csv",
)
else:
st.write("Tidak ada data yang tersedia di tabel shap_pred_result.")
# Footer
st.markdown(
"""
<div class="footer">
<p><strong>2025 © Jesselyn Mu</strong></p>
<p>Untuk informasi lebih lanjut, dapat mengirim email ke mujesselyn@gmail.com</p>
</div>
""",
unsafe_allow_html=True
)
# Jalankan fungsi show_report
if __name__ == "__main__":
show_report()