Files
Prediksi-Bensin-Oplosan/Concat.py
2110511019 fe7bb529ed Code Skripsi
This is full code for prediction of fuel adulteration
2025-07-11 06:25:57 +00:00

63 lines
1.6 KiB
Python

import os
import pandas as pd
# Path folder yang berisi data txt
label = 100
path = "pertalite_murni/"
# path = f"{label}/"
# Simpan Data
myData = []
for dir, folder, files in os.walk(path):
# Menggabungkan setiap data dalam folder tertentu
for file in files:
df_temp = pd.read_csv(f"{dir}/{file}", delimiter=';')
data_values = list(df_temp.columns)
myData.append(data_values)
# 18 Kolom
columns = ['410nm', '435nm', '460nm','485nm',
'510nm', '535nm', '560nm', '585nm',
'610nm', '645nm', '680nm', '705nm',
'730nm', '760nm', '810nm', '860nm',
'900nm', '940nm']
# Simpan ke dalam CSV
df = pd.DataFrame(myData, columns=columns)
df['Label'] = label
df.to_excel(f"Fuel_Ron90{label}_new2.xlsx", index=False)
# import os
# import pandas as pd
# # Path folder yang berisi data txt
# label = 100
# path = f"{label}/"
# # Simpan Data
# myData = []
# for dir, folder, files in os.walk(path):
# # Menggabungkan setiap data dalam folder tertentu
# for file in files:
# df_temp = pd.read_csv(f"{dir}/{file}", delimiter=';')
# data_values = list(df_temp.columns)
# myData.append(data_values)
# # 18 Kolom
# columns = ['410nm', '435nm', '460nm','485nm',
# '510nm', '535nm', '560nm', '585nm',
# '610nm', '645nm', '680nm', '705nm',
# '730nm', '760nm', '810nm', '860nm',
# '900nm', '940nm']
# # Simpan ke dalam Excel
# df = pd.DataFrame(myData, columns=columns)
# df['Label'] = label
# df.head()
# df.to_excel(f"Fuel_{label}_new.xlsx", index=False)