Initial commit

This commit is contained in:
Bobby Rafael
2025-04-29 19:52:06 +07:00
commit df18c63766
166 changed files with 32814 additions and 0 deletions

View File

@ -0,0 +1,8 @@
fileFormatVersion: 2
guid: d42eae92c7176994eab3b43bf03f581d
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

View File

@ -0,0 +1,61 @@
using UnityEngine;
using UnityEditor;
#if UNITY_EDITOR
public class MemoryProfilerSetup
{
[MenuItem("Tools/Pathfinding/Enable Memory Profiler")]
public static void EnableMemoryProfiler()
{
string definesString = PlayerSettings.GetScriptingDefineSymbolsForGroup(
EditorUserBuildSettings.selectedBuildTargetGroup);
if (!definesString.Contains("ENABLE_MEMORY_PROFILER"))
{
if (definesString.Length > 0)
definesString += ";";
definesString += "ENABLE_MEMORY_PROFILER";
PlayerSettings.SetScriptingDefineSymbolsForGroup(
EditorUserBuildSettings.selectedBuildTargetGroup, definesString);
Debug.Log("Memory Profiler enabled! (Added ENABLE_MEMORY_PROFILER symbol)");
Debug.Log("Please restart the editor for this to take effect.");
}
else
{
Debug.Log("Memory Profiler is already enabled.");
}
}
[MenuItem("Tools/Pathfinding/Disable Memory Profiler")]
public static void DisableMemoryProfiler()
{
string definesString = PlayerSettings.GetScriptingDefineSymbolsForGroup(
EditorUserBuildSettings.selectedBuildTargetGroup);
if (definesString.Contains("ENABLE_MEMORY_PROFILER"))
{
definesString = definesString.Replace("ENABLE_MEMORY_PROFILER", "");
definesString = definesString.Replace(";;", ";"); // Fix double semicolons
// Remove leading or trailing semicolons
if (definesString.StartsWith(";"))
definesString = definesString.Substring(1);
if (definesString.EndsWith(";"))
definesString = definesString.Substring(0, definesString.Length - 1);
PlayerSettings.SetScriptingDefineSymbolsForGroup(
EditorUserBuildSettings.selectedBuildTargetGroup, definesString);
Debug.Log("Memory Profiler disabled! (Removed ENABLE_MEMORY_PROFILER symbol)");
Debug.Log("Please restart the editor for this to take effect.");
}
else
{
Debug.Log("Memory Profiler is already disabled.");
}
}
}
#endif

View File

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: de037ed26926f9a43a584de8100ed5ee
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View File

@ -0,0 +1,13 @@
using UnityEngine;
public class FrameLimiter : MonoBehaviour
{
// Start is called before the first frame update
[SerializeField] private int frameRate = 60;
void Start()
{
// Set the target frame rate to 60
QualitySettings.vSyncCount = 0;
Application.targetFrameRate = frameRate;
}
}

View File

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 2538d99f2b342eb4485c7a83535b55e6
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

1003
Assets/Scripts/GridMap.cs Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 42bfb8854d690bf4fa7ccf911313d0ae
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View File

@ -0,0 +1,50 @@
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
/// <summary>
/// Kelas GridNode merepresentasikan sebuah node/sel di dalam grid untuk algoritma pathfinding.
/// Kelas ini mewarisi dari PathFinding.Node<Vector2Int> dan mengimplementasikan fungsionalitas spesifik
/// untuk pathfinding berbasis grid.
/// </summary>
public class GridNode : PathFinding.Node<Vector2Int>
{
/// <summary>
/// Menentukan apakah node ini dapat dilalui oleh karakter.
/// True jika node dapat dilalui, false jika node adalah penghalang.
/// </summary>
public bool IsWalkable { get; set; }
/// <summary>
/// Referensi ke GridMap yang mengelola seluruh grid.
/// Digunakan untuk mendapatkan tetangga dan operasi lain yang berhubungan dengan grid.
/// </summary>
public GridMap gridMap; // Change to internal or public
/// <summary>
/// Constructor untuk membuat GridNode baru.
/// </summary>
/// <param name="value">Koordinat Vector2Int yang merepresentasikan posisi node di dalam grid</param>
/// <param name="gridMap">Referensi ke GridMap yang mengelola grid ini</param>
public GridNode(Vector2Int value, GridMap gridMap)
: base(value)
{
IsWalkable = true; // Secara default node dapat dilalui
this.gridMap = gridMap; // Simpan referensi ke GridMap
}
/// <summary>
/// Mengimplementasikan metode abstrak dari kelas dasar untuk mendapatkan daftar node tetangga.
/// Metode ini akan memanggil GridMap.GetNeighbours() untuk mendapatkan semua node tetangga yang dapat dilalui.
/// </summary>
/// <returns>Daftar node tetangga yang dapat dicapai dari node ini</returns>
public override
List<PathFinding.Node<Vector2Int>> GetNeighbours()
{
// Return an empty list for now.
// Later we will call gridMap's GetNeighbours
// function.
//return new List<PathFinding.Node<Vector2Int>>();
return gridMap.GetNeighbours(this);
}
}

View File

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 0b7a35795dca08b40a81b3624bdb7c8c
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View File

@ -0,0 +1,43 @@
using UnityEngine;
/// <summary>
/// Kelas GridNodeView bertanggung jawab untuk visualisasi node grid dalam sistem pathfinding.
/// Kelas ini menghubungkan data GridNode dengan representasi visualnya di Unity.
/// </summary>
public class GridNodeView : MonoBehaviour
{
/// <summary>
/// Referensi ke SpriteRenderer untuk bagian dalam node.
/// </summary>
[SerializeField]
SpriteRenderer innerSprite;
/// <summary>
/// Referensi ke SpriteRenderer untuk bagian luar node.
/// </summary>
[SerializeField]
SpriteRenderer outerSprite;
/// <summary>
/// Properti yang menyimpan referensi ke objek GridNode yang terkait dengan view ini.
/// </summary>
public GridNode Node { get; set; }
/// <summary>
/// Mengatur warna sprite bagian dalam dari node.
/// </summary>
/// <param name="col">Warna yang akan diaplikasikan pada sprite bagian dalam.</param>
public void SetInnerColor(Color col)
{
innerSprite.color = col;
}
/// <summary>
/// Mengatur warna sprite bagian luar dari node.
/// </summary>
/// <param name="col">Warna yang akan diaplikasikan pada sprite bagian luar.</param>
public void SetOuterColor(Color col)
{
outerSprite.color = col;
}
}

View File

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: f0f6674c2a748f0468bfd5694b501cf8
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View File

@ -0,0 +1,8 @@
fileFormatVersion: 2
guid: 2f3bb8e91fe8a83418431baba8b407d9
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

View File

@ -0,0 +1,727 @@
using PathFinding;
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using UnityEngine;
public struct PathfindingMetrics
{
public float timeTaken; // in milliseconds
public int pathLength; // number of nodes in path
public long memoryUsed; // memory used by pathfinding in bytes
public int maxOpenListSize; // maximum size of open list during pathfinding
public int maxClosedListSize; // maximum size of closed list during pathfinding
// Tambahan untuk cost metrics
public float totalGCost; // Total biaya G untuk jalur (jarak sebenarnya)
public float totalHCost; // Total biaya H untuk jalur (heuristik)
public float totalFCost; // Total biaya F untuk jalur (G + H)
// Tambahan metrik untuk analisis akademis
public int totalExpandedNodes; // Node yang dikeluarkan dari open list dan diproses (ClosedList)
public int totalGeneratedNodes; // Node yang ditambahkan ke open list
public int totalTouchedNodes; // Node yang dievaluasi/diupdate (termasuk yang di-skip)
}
public class NPC : MonoBehaviour
{
public float speed = 2.0f;
public Queue<Vector2> wayPoints = new Queue<Vector2>();
// Event that fires when pathfinding is complete with performance metrics
public event Action<PathfindingMetrics> OnPathfindingComplete;
public enum PathFinderType
{
ASTAR,
DIJKSTRA,
GREEDY,
BACKTRACKING,
BFS,
}
// Mode pengukuran memori
public enum MemoryMeasurementMode
{
UNITY_PROFILER // Pengukuran dari Unity Profiler
}
[SerializeField]
public PathFinderType pathFinderType = PathFinderType.ASTAR;
// Mode pengukuran memori
[SerializeField]
public MemoryMeasurementMode memoryMeasurementMode = MemoryMeasurementMode.UNITY_PROFILER;
PathFinder<Vector2Int> pathFinder = null;
public GridMap Map { get; set; }
// List to store all steps for visualization playback
private List<PathfindingVisualizationStep> visualizationSteps = new List<PathfindingVisualizationStep>();
private bool isVisualizingPath = false;
// Properties to control visualization
[SerializeField]
// Visualization speed is time between visualization steps
public float visualizationSpeed = 0.0f; // Default 0; set higher for slower visualization
// Visualization batch is the number of steps to visualize at once
public int visualizationBatch = 1; // Default 1; set higher value for faster visualization
[SerializeField]
public bool showVisualization = true; // Whether to show visualization at all
// Struct to store each step of the pathfinding process for visualization
private struct PathfindingVisualizationStep
{
public enum StepType { CurrentNode, OpenList, ClosedList, FinalPath }
public StepType type;
public Vector2Int position;
public PathfindingVisualizationStep(StepType type, Vector2Int position)
{
this.type = type;
this.position = position;
}
}
// Tambahkan counter untuk metrik baru
private int expandedNodesCount = 0;
private int generatedNodesCount = 0;
private int touchedNodesCount = 0;
private IEnumerator Coroutine_MoveOverSeconds(
GameObject objectToMove,
Vector3 end,
float seconds)
{
float elaspedTime = 0.0f;
Vector3 startingPos = objectToMove.transform.position;
while (elaspedTime < seconds)
{
objectToMove.transform.position =
Vector3.Lerp(startingPos, end, elaspedTime / seconds);
elaspedTime += Time.deltaTime;
yield return new WaitForEndOfFrame();
}
objectToMove.transform.position = end;
}
IEnumerator Coroutine_MoveToPoint(Vector2 p, float speed)
{
Vector3 endP = new Vector3(p.x, p.y, transform.position.z);
float duration = (transform.position - endP).magnitude / speed;
yield return StartCoroutine(
Coroutine_MoveOverSeconds(
transform.gameObject, endP, duration));
}
public IEnumerator Coroutine_MoveTo()
{
while (true)
{
while (wayPoints.Count > 0)
{
yield return StartCoroutine(
Coroutine_MoveToPoint(
wayPoints.Dequeue(),
speed));
}
yield return null;
}
}
private void AddWayPoint(GridNode node)
{
wayPoints.Enqueue(new Vector2(
node.Value.x * Map.GridNodeWidth,
node.Value.y * Map.GridNodeHeight));
// We set a color to show the path.
GridNodeView gnv = Map.GetGridNodeView(node.Value.x, node.Value.y);
gnv.SetInnerColor(Map.COLOR_PATH);
}
public void SetStartNode(GridNode node)
{
wayPoints.Clear();
transform.position = new Vector3(
node.Value.x * Map.GridNodeWidth,
node.Value.y * Map.GridNodeHeight,
transform.position.z);
}
private void InitializePathFinder()
{
// Hitung perkiraan jumlah node dalam grid
int estimatedNodeCount = 0;
if (Map != null)
{
estimatedNodeCount = Map.NumX * Map.NumY;
}
// Log informasi ukuran grid dan strategi optimisasi
bool isLargeGrid = estimatedNodeCount > 2500;
UnityEngine.Debug.Log($"Grid Size: {Map?.NumX ?? 0}x{Map?.NumY ?? 0} ({estimatedNodeCount} nodes) - " +
$"Using {(isLargeGrid ? "optimized" : "simplified")} pathfinding strategy");
// Create new pathfinder instance
switch (pathFinderType)
{
case PathFinderType.ASTAR:
pathFinder = new AStarPathFinder<Vector2Int>(estimatedNodeCount);
break;
case PathFinderType.DIJKSTRA:
pathFinder = new DijkstraPathFinder<Vector2Int>(estimatedNodeCount);
break;
case PathFinderType.GREEDY:
pathFinder = new GreedyPathFinder<Vector2Int>();
break;
case PathFinderType.BACKTRACKING:
pathFinder = new BacktrackingPathFinder<Vector2Int>();
break;
case PathFinderType.BFS:
pathFinder = new BFSPathFinder<Vector2Int>();
break;
}
// Set up callbacks
pathFinder.onSuccess = OnSuccessPathFinding;
pathFinder.onFailure = OnFailurePathFinding;
// Gunakan setting asli
pathFinder.HeuristicCost = GridMap.GetManhattanCost;
pathFinder.NodeTraversalCost = GridMap.GetEuclideanCost;
UnityEngine.Debug.Log($"Initialized pathfinder with algorithm: {pathFinderType}");
}
public void MoveTo(GridNode destination, bool silentMode = false)
{
if (pathFinder == null)
{
UnityEngine.Debug.LogError("Pathfinder is not initialized!");
InitializePathFinder();
}
if (pathFinder.Status == PathFinderStatus.RUNNING)
{
UnityEngine.Debug.Log("PathFinder is running. Cannot start a new pathfinding now");
return;
}
GridNode start = Map.GetGridNode(
(int)(transform.position.x / Map.GridNodeWidth),
(int)(transform.position.y / Map.GridNodeHeight));
if (start == null || destination == null)
{
UnityEngine.Debug.LogError($"Invalid start or destination node. Start: {start}, Destination: {destination}");
return;
}
if (!silentMode)
{
UnityEngine.Debug.Log($"Starting pathfinding from ({start.Value.x}, {start.Value.y}) to ({destination.Value.x}, {destination.Value.y})");
}
SetStartNode(start);
// Reset grid colors
if (!silentMode)
{
Map.ResetGridNodeColours();
}
visualizationSteps.Clear();
isVisualizingPath = false;
// Initialize pathfinding
if (!pathFinder.Initialise(start, destination))
{
UnityEngine.Debug.LogError("Failed to initialize pathfinder!");
return;
}
StartCoroutine(Coroutine_FindPathStep(silentMode));
}
IEnumerator Coroutine_FindPathStep(bool silentMode = false)
{
yield return StartCoroutine(MeasurePerformance(silentMode));
// Start visualization after calculation is complete
if (pathFinder.Status == PathFinderStatus.SUCCESS && showVisualization && !silentMode)
{
yield return StartCoroutine(VisualizePathfinding());
}
}
IEnumerator MeasurePerformance(bool silentMode = false)
{
// Memory tracking for pathfinding structures - tetap untuk visualisasi
int maxOpenListSize = 0;
int currentOpenListSize = 0;
int maxClosedListSize = 0;
int currentClosedListSize = 0;
// Pre-allocate visualizationSteps with estimated capacity to avoid reallocations
visualizationSteps = new List<PathfindingVisualizationStep>(1000);
// ===== MEMORY MEASUREMENT START: Ukur memory sebelum algoritma =====
System.GC.Collect(); // Force garbage collection untuk pengukuran yang akurat
System.GC.WaitForPendingFinalizers();
long memoryBefore = System.GC.GetTotalMemory(false);
// Setup callbacks before running algorithm
SetupCallbacks(silentMode, ref maxOpenListSize, ref currentOpenListSize,
ref maxClosedListSize, ref currentClosedListSize);
// ===== STOPWATCH START: Pengukuran waktu algoritma =====
float startTime = Time.realtimeSinceStartup;
// Counter untuk jumlah step yang dilakukan algoritma
int stepCount = 0;
// Execute the pathfinding algorithm synchronously in a single frame without visualization
while (pathFinder.Status == PathFinderStatus.RUNNING)
{
stepCount++;
pathFinder.Step();
}
// ===== STOPWATCH STOP: Akhir pengukuran waktu algoritma =====
float endTime = Time.realtimeSinceStartup;
float duration = (endTime - startTime) * 1000f; // Convert to milliseconds
// ===== MEMORY MEASUREMENT END: Ukur memory setelah algoritma =====
long memoryAfter = System.GC.GetTotalMemory(false);
long memoryUsed = memoryAfter - memoryBefore;
UnityEngine.Debug.Log($"Memory used: {memoryUsed} bytes");
UnityEngine.Debug.Log($"Algorithm execution time: {duration:F2} ms");
// Calculate path length once and reuse
int pathLength = 0;
float totalGCost = 0;
float totalHCost = 0;
float totalFCost = 0;
// Add memory for path reconstruction (final path)
if (pathFinder.Status == PathFinderStatus.SUCCESS)
{
pathLength = CalculatePathLength();
// Hitung total G, H, dan F cost
CalculatePathCosts(out totalGCost, out totalHCost, out totalFCost);
}
// Koreksi estimasi touched nodes berdasarkan jumlah langkah dan expanded nodes
// Pendekatan heuristik: touched nodes = expanded nodes * rata-rata branching factor
float estimatedBranchingFactor = 4.0f; // Untuk grid 4-connected
if (pathFinderType == PathFinderType.ASTAR || pathFinderType == PathFinderType.GREEDY)
{
// A* dan Greedy biasanya memeriksa lebih sedikit node karena heuristik
estimatedBranchingFactor = 3.5f;
}
// Koreksi touchedNodesCount jika terlalu rendah, karena estimasi minimal
int estimatedTouchedNodes = Mathf.RoundToInt(expandedNodesCount * estimatedBranchingFactor);
touchedNodesCount = Mathf.Max(touchedNodesCount, estimatedTouchedNodes);
// Create and send metrics - waktu pengukuran algoritma yang tepat
PathfindingMetrics metrics = new PathfindingMetrics
{
timeTaken = duration, // Waktu algoritma yang diukur dengan Time.realtimeSinceStartup
pathLength = pathLength,
memoryUsed = memoryUsed,
maxOpenListSize = maxOpenListSize,
maxClosedListSize = maxClosedListSize,
totalGCost = totalGCost,
totalHCost = totalHCost,
totalFCost = totalFCost,
// Tambahkan metrik baru
totalExpandedNodes = expandedNodesCount,
totalGeneratedNodes = generatedNodesCount,
totalTouchedNodes = touchedNodesCount
};
// Report metrics before visualization
if (!silentMode)
{
OnPathfindingComplete?.Invoke(metrics);
}
// Path visualization and handling
HandlePathFindingResult(silentMode, pathLength);
// Pastikan untuk mengembalikan nilai di akhir coroutine
yield return null;
}
/// <summary>
/// Setup callbacks for tracking nodes in open/closed lists and visualization
/// </summary>
private void SetupCallbacks(bool silentMode, ref int maxOpenListSize, ref int currentOpenListSize,
ref int maxClosedListSize, ref int currentClosedListSize)
{
// Reset counters setiap kali pathfinding dimulai
expandedNodesCount = 0;
generatedNodesCount = 0;
touchedNodesCount = 0;
// Buat variabel lokal untuk menghindari masalah dengan ref parameter dalam lambda
int localCurrentOpenListSize = currentOpenListSize;
int localMaxOpenListSize = maxOpenListSize;
int localCurrentClosedListSize = currentClosedListSize;
int localMaxClosedListSize = maxClosedListSize;
if (silentMode)
{
// In silent mode, just set minimal callbacks for metrics
pathFinder.onAddToOpenList = (node) =>
{
// Menghitung node yang ditambahkan ke open list (generated)
generatedNodesCount++;
localCurrentOpenListSize++;
if (localCurrentOpenListSize > localMaxOpenListSize)
localMaxOpenListSize = localCurrentOpenListSize;
};
pathFinder.onAddToClosedList = (node) =>
{
// Menghitung node yang dipindahkan ke closed list (expanded)
expandedNodesCount++;
localCurrentClosedListSize++;
if (localCurrentClosedListSize > localMaxClosedListSize)
localMaxClosedListSize = localCurrentClosedListSize;
localCurrentOpenListSize--; // When a node is moved from open to closed list
};
// For touched nodes, kita menghitung semua node yang dievaluasi
// Karena kita tidak bisa memodifikasi PathFinder class, kita estimasi ini
// berdasarkan jumlah Step yang dilakukan algoritma
pathFinder.onChangeCurrentNode = (node) =>
{
// Setiap kali node diproses, node tetangga dievaluasi (touched)
// Kita akan mengestimasi jumlah node tetangga (umumnya 4-8 untuk grid)
touchedNodesCount += 4; // Estimasi minimal, akan dikoreksi nanti
};
}
else
{
// In regular mode, track and prepare for visualization
pathFinder.onAddToOpenList = (node) =>
{
// Menghitung node yang ditambahkan ke open list (generated)
generatedNodesCount++;
visualizationSteps.Add(new PathfindingVisualizationStep(
PathfindingVisualizationStep.StepType.OpenList,
node.Location.Value));
localCurrentOpenListSize++;
if (localCurrentOpenListSize > localMaxOpenListSize)
localMaxOpenListSize = localCurrentOpenListSize;
};
pathFinder.onAddToClosedList = (node) =>
{
// Menghitung node yang dipindahkan ke closed list (expanded)
expandedNodesCount++;
visualizationSteps.Add(new PathfindingVisualizationStep(
PathfindingVisualizationStep.StepType.ClosedList,
node.Location.Value));
localCurrentClosedListSize++;
if (localCurrentClosedListSize > localMaxClosedListSize)
localMaxClosedListSize = localCurrentClosedListSize;
localCurrentOpenListSize--; // When a node is moved from open to closed list
};
pathFinder.onChangeCurrentNode = (node) =>
{
// Setiap kali node diproses, node tetangga dievaluasi (touched)
touchedNodesCount += 4; // Estimasi minimal
visualizationSteps.Add(new PathfindingVisualizationStep(
PathfindingVisualizationStep.StepType.CurrentNode,
node.Location.Value));
};
}
// Setelah lambda selesai dijalankan, perbarui variabel ref
maxOpenListSize = localMaxOpenListSize;
currentOpenListSize = localCurrentOpenListSize;
maxClosedListSize = localMaxClosedListSize;
currentClosedListSize = localCurrentClosedListSize;
}
/// <summary>
/// Handle path finding result (success or failure)
/// </summary>
private void HandlePathFindingResult(bool silentMode, int pathLength)
{
if (pathFinder.Status == PathFinderStatus.SUCCESS)
{
OnSuccessPathFinding();
// In non-silent mode, prepare visualization data for the path
if (!silentMode && showVisualization)
{
// Add the path nodes for visualization in efficient batched way
PathFinder<Vector2Int>.PathFinderNode node = pathFinder.CurrentNode;
List<Vector2Int> pathPositions = new List<Vector2Int>(pathLength); // Pre-allocate with known size
// Build path in reverse order
while (node != null)
{
pathPositions.Add(node.Location.Value);
node = node.Parent;
}
// Process path in correct order
for (int i = pathPositions.Count - 1; i >= 0; i--)
{
visualizationSteps.Add(new PathfindingVisualizationStep(
PathfindingVisualizationStep.StepType.FinalPath,
pathPositions[i]));
}
}
}
else if (pathFinder.Status == PathFinderStatus.FAILURE)
{
OnFailurePathFinding();
}
}
/// <summary>
/// Memformat ukuran byte menjadi string yang lebih mudah dibaca
/// </summary>
void OnSuccessPathFinding()
{
float totalGCost = 0;
float totalHCost = 0;
float totalFCost = 0;
// Hitung biaya-biaya path menggunakan metode yang sudah ada
CalculatePathCosts(out totalGCost, out totalHCost, out totalFCost);
// Informasi dasar
int pathLength = CalculatePathLength();
// Log informasi lengkap hanya jika dibutuhkan
if (UnityEngine.Debug.isDebugBuild)
{
UnityEngine.Debug.Log($"Pathfinding Success - Algorithm: {pathFinderType}");
UnityEngine.Debug.Log($"Final Path length: {pathLength} nodes");
UnityEngine.Debug.Log($"Nodes explored: {expandedNodesCount}");
// Log node metrics untuk analisis akademis
UnityEngine.Debug.Log($"Generated nodes: {generatedNodesCount}");
UnityEngine.Debug.Log($"Touched nodes: {touchedNodesCount}");
// Log cost metrics dengan format yang lebih jelas
bool usesHeuristic = pathFinderType == PathFinderType.ASTAR || pathFinderType == PathFinderType.GREEDY;
UnityEngine.Debug.Log($"Total G-Cost: {totalGCost:F2} (Jarak sebenarnya)");
if (usesHeuristic)
{
UnityEngine.Debug.Log($"Total H-Cost: {totalHCost:F2} (Estimasi heuristik)");
UnityEngine.Debug.Log($"Total F-Cost: {totalFCost:F2} (G+H, Biaya total)");
}
// Log detail tambahan jika perlu
UnityEngine.Debug.Log($"Average cost per step: {(pathLength > 0 ? totalGCost / pathLength : 0):F2}");
}
}
void OnFailurePathFinding()
{
if (UnityEngine.Debug.isDebugBuild)
{
UnityEngine.Debug.Log("Cannot find path. No valid path exists!");
UnityEngine.Debug.Log($"Nodes explored: {expandedNodesCount}");
}
}
/// <summary>
/// Changes the pathfinding algorithm at runtime
/// </summary>
public void ChangeAlgorithm(PathFinderType newType)
{
// Don't change if pathfinding is in progress
if (pathFinder != null && pathFinder.Status == PathFinderStatus.RUNNING)
{
UnityEngine.Debug.Log("Cannot change algorithm while pathfinding is running");
return;
}
pathFinderType = newType;
// Hitung perkiraan jumlah node dalam grid
int estimatedNodeCount = 0;
if (Map != null)
{
estimatedNodeCount = Map.NumX * Map.NumY;
}
// Create new pathfinder instance
switch (pathFinderType)
{
case PathFinderType.ASTAR:
pathFinder = new AStarPathFinder<Vector2Int>(estimatedNodeCount);
break;
case PathFinderType.DIJKSTRA:
pathFinder = new DijkstraPathFinder<Vector2Int>(estimatedNodeCount);
break;
case PathFinderType.GREEDY:
pathFinder = new GreedyPathFinder<Vector2Int>();
break;
case PathFinderType.BACKTRACKING:
pathFinder = new BacktrackingPathFinder<Vector2Int>();
break;
case PathFinderType.BFS:
pathFinder = new BFSPathFinder<Vector2Int>();
break;
}
// Set up callbacks
pathFinder.onSuccess = OnSuccessPathFinding;
pathFinder.onFailure = OnFailurePathFinding;
// Gunakan setting asli
pathFinder.HeuristicCost = GridMap.GetManhattanCost;
pathFinder.NodeTraversalCost = GridMap.GetEuclideanCost;
UnityEngine.Debug.Log($"Changed pathfinding algorithm to {pathFinderType}");
}
private int CalculatePathLength()
{
int pathLength = 0;
PathFinder<Vector2Int>.PathFinderNode node = pathFinder.CurrentNode;
while (node != null)
{
pathLength++;
node = node.Parent;
}
return pathLength;
}
IEnumerator VisualizePathfinding()
{
if (!showVisualization)
yield break;
isVisualizingPath = true;
// First, ensure grid is reset
Map.ResetGridNodeColours();
// Visualize each step with a delay - use batch processing for efficiency
int stepCount = visualizationSteps.Count;
int batchSize = Mathf.Min(visualizationBatch, stepCount); // set higher value for faster visualization
for (int i = 0; i < stepCount; i += batchSize)
{
int end = Mathf.Min(i + batchSize, stepCount);
// Process a batch of steps
for (int j = i; j < end; j++)
{
var step = visualizationSteps[j];
GridNodeView gnv = Map.GetGridNodeView(step.position.x, step.position.y);
if (gnv != null)
{
switch (step.type)
{
case PathfindingVisualizationStep.StepType.CurrentNode:
gnv.SetInnerColor(Map.COLOR_CURRENT_NODE);
break;
case PathfindingVisualizationStep.StepType.OpenList:
gnv.SetInnerColor(Map.COLOR_ADD_TO_OPENLIST);
break;
case PathfindingVisualizationStep.StepType.ClosedList:
gnv.SetInnerColor(Map.COLOR_ADD_TO_CLOSEDLIST);
break;
case PathfindingVisualizationStep.StepType.FinalPath:
gnv.SetInnerColor(Map.COLOR_PATH);
// Also add the waypoint when we process the path
if (step.type == PathfindingVisualizationStep.StepType.FinalPath)
{
GridNode pathNode = Map.GetGridNode(step.position.x, step.position.y);
AddWayPoint(pathNode);
}
break;
}
}
}
// Yield after each batch to prevent frame drops
yield return new WaitForSeconds(visualizationSpeed);
}
isVisualizingPath = false;
}
/// <summary>
/// Menghitung biaya G, H, dan F untuk jalur
/// </summary>
private void CalculatePathCosts(out float totalGCost, out float totalHCost, out float totalFCost)
{
// Inisialisasi nilai awal
totalGCost = 0;
totalHCost = 0;
totalFCost = 0;
// Jika tidak ada path yang ditemukan, return nilai 0
if (pathFinder.CurrentNode == null)
return;
// Untuk algoritma yang menggunakan heuristik
bool usesHeuristic = pathFinderType == PathFinderType.ASTAR ||
pathFinderType == PathFinderType.GREEDY;
// Node final berisi total cost jalur
PathFinder<Vector2Int>.PathFinderNode finalNode = pathFinder.CurrentNode;
// G cost adalah biaya sebenarnya dari start ke goal, sudah terakumulasi di node akhir
totalGCost = finalNode.GCost;
// H cost di node final idealnya 0 (sudah di tujuan),
// tapi untuk info lengkap, kita dapat path's H cost dari node awal
if (usesHeuristic)
{
// H cost dari node awal ke tujuan (untuk referensi)
totalHCost = finalNode.HCost;
// F cost adalah G + H di node akhir
totalFCost = finalNode.FCost;
// Log additional debug info
UnityEngine.Debug.Log($"Final node - G:{finalNode.GCost:F2}, H:{finalNode.HCost:F2}, F:{finalNode.FCost:F2}");
}
else
{
// Algoritma tanpa heuristik (seperti Dijkstra)
totalFCost = totalGCost;
}
// Hitung rata-rata biaya per langkah untuk analisis
int pathLength = CalculatePathLength();
float avgCostPerStep = pathLength > 0 ? totalGCost / pathLength : 0;
UnityEngine.Debug.Log($"[COST] Path: {pathLength} steps, Avg cost/step: {avgCostPerStep:F2}");
}
}

View File

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 26c169e6e7d6dd0418f0b28f61d26407
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

643
Assets/Scripts/NPC.cs Normal file
View File

@ -0,0 +1,643 @@
using PathFinding;
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using UnityEngine;
public struct PathfindingMetrics
{
// Untuk Pengukuran Kinerja
public float timeTaken; // in milliseconds
public int pathLength;
public int nodesExplored; // number of nodes in path
public long memoryUsed; // memory used by pathfinding in bytes
// Untuk Visualisasi
public int maxOpenListSize; // maximum size of open list during pathfinding
public int maxClosedListSize; // maximum size of closed list during pathfinding
// Tambahan untuk cost metrics
public float totalGCost; // Total biaya G untuk jalur (jarak sebenarnya)
public float totalHCost; // Total biaya H untuk jalur (heuristik)
public float totalFCost; // Total biaya F untuk jalur (G + H)
}
public class NPC : MonoBehaviour
{
public float speed = 2.0f;
public Queue<Vector2> wayPoints = new Queue<Vector2>();
// Event that fires when pathfinding is complete with performance metrics
public event Action<PathfindingMetrics> OnPathfindingComplete;
public enum PathFinderType
{
ASTAR,
DIJKSTRA,
GREEDY,
BACKTRACKING,
BFS,
}
[SerializeField]
public PathFinderType pathFinderType = PathFinderType.ASTAR;
PathFinder<Vector2Int> pathFinder = null;
public GridMap Map { get; set; }
// List to store all steps for visualization playback
private List<PathfindingVisualizationStep> visualizationSteps = new List<PathfindingVisualizationStep>();
private bool isVisualizingPath = false;
// Properties to control visualization
[SerializeField]
// Visualization speed is time between visualization steps
public float visualizationSpeed = 0.0f; // Default 0; set higher for slower visualization
// Visualization batch is the number of steps to visualize at once
public int visualizationBatch = 1; // Default 1; set higher value for faster visualization
[SerializeField]
public bool showVisualization = true; // Whether to show visualization at all
// Struct to store each step of the pathfinding process for visualization
private struct PathfindingVisualizationStep
{
public enum StepType { CurrentNode, OpenList, ClosedList, FinalPath }
public StepType type;
public Vector2Int position;
public PathfindingVisualizationStep(StepType type, Vector2Int position)
{
this.type = type;
this.position = position;
}
}
private IEnumerator Coroutine_MoveOverSeconds(GameObject objectToMove, Vector3 end, float seconds)
{
float elaspedTime = 0.0f;
Vector3 startingPos = objectToMove.transform.position;
while (elaspedTime < seconds)
{
objectToMove.transform.position =
Vector3.Lerp(startingPos, end, elaspedTime / seconds);
elaspedTime += Time.deltaTime;
yield return new WaitForEndOfFrame();
}
objectToMove.transform.position = end;
}
IEnumerator Coroutine_MoveToPoint(Vector2 p, float speed)
{
Vector3 endP = new Vector3(p.x, p.y, transform.position.z);
float duration = (transform.position - endP).magnitude / speed;
yield return StartCoroutine(
Coroutine_MoveOverSeconds(
transform.gameObject, endP, duration));
}
public IEnumerator Coroutine_MoveTo()
{
while (true)
{
while (wayPoints.Count > 0)
{
yield return StartCoroutine(
Coroutine_MoveToPoint(
wayPoints.Dequeue(),
speed));
}
yield return null;
}
}
private void AddWayPoint(GridNode node)
{
wayPoints.Enqueue(new Vector2(
node.Value.x * Map.GridNodeWidth,
node.Value.y * Map.GridNodeHeight));
// We set a color to show the path.
GridNodeView gnv = Map.GetGridNodeView(node.Value.x, node.Value.y);
gnv.SetInnerColor(Map.COLOR_PATH);
}
public void SetStartNode(GridNode node)
{
wayPoints.Clear();
transform.position = new Vector3(
node.Value.x * Map.GridNodeWidth,
node.Value.y * Map.GridNodeHeight,
transform.position.z);
}
private void Start()
{
// Initialize pathfinder based on type
InitializePathFinder();
// Start the movement coroutine
StartCoroutine(Coroutine_MoveTo());
}
private void InitializePathFinder()
{
// Hitung perkiraan jumlah node dalam grid
int estimatedNodeCount = 0;
if (Map != null)
{
estimatedNodeCount = Map.NumX * Map.NumY;
}
// Log informasi ukuran grid dan strategi optimisasi
bool isLargeGrid = estimatedNodeCount > 2500;
// Create new pathfinder instance
switch (pathFinderType)
{
case PathFinderType.ASTAR:
pathFinder = new AStarPathFinder<Vector2Int>(estimatedNodeCount);
break;
case PathFinderType.DIJKSTRA:
pathFinder = new DijkstraPathFinder<Vector2Int>(estimatedNodeCount);
break;
case PathFinderType.GREEDY:
pathFinder = new GreedyPathFinder<Vector2Int>();
break;
case PathFinderType.BACKTRACKING:
pathFinder = new BacktrackingPathFinder<Vector2Int>();
break;
case PathFinderType.BFS:
pathFinder = new BFSPathFinder<Vector2Int>();
break;
}
// Set up callbacks
pathFinder.onSuccess = OnSuccessPathFinding;
pathFinder.onFailure = OnFailurePathFinding;
// Gunakan setting asli
pathFinder.HeuristicCost = GridMap.GetManhattanCost;
pathFinder.NodeTraversalCost = GridMap.GetEuclideanCost;
}
public void MoveTo(GridNode destination, bool silentMode = false)
{
// inialisaasi pathfinder jika belum ada
if (pathFinder == null)
{
InitializePathFinder();
}
if (pathFinder.Status == PathFinderStatus.RUNNING)
{
return;
}
GridNode start = Map.GetGridNode(
(int)(transform.position.x / Map.GridNodeWidth),
(int)(transform.position.y / Map.GridNodeHeight));
if (start == null || destination == null)
{
return;
}
SetStartNode(start);
// Reset grid colors
if (!silentMode)
{
Map.ResetGridNodeColours();
}
visualizationSteps.Clear();
isVisualizingPath = false;
// jika gagal menginisialisasi pathfinder, tidak perlu melanjutkan
if (!pathFinder.Initialise(start, destination))
{
return;
}
StartCoroutine(Coroutine_FindPathStep(silentMode));
}
IEnumerator Coroutine_FindPathStep(bool silentMode = false)
{
yield return StartCoroutine(MeasurePerformance(silentMode));
// Start visualization after calculation is complete
if (pathFinder.Status == PathFinderStatus.SUCCESS && showVisualization && !silentMode)
{
yield return StartCoroutine(VisualizePathfinding());
}
}
IEnumerator MeasurePerformance(bool silentMode = false)
{
// Memory tracking for pathfinding structures - tetap untuk visualisasi
int maxOpenListSize = 0;
int currentOpenListSize = 0;
int maxClosedListSize = 0;
int currentClosedListSize = 0;
// Pre-allocate visualizationSteps with estimated capacity to avoid reallocations
visualizationSteps = new List<PathfindingVisualizationStep>(4);
// ===== MEMORY MEASUREMENT START: Ukur memory sebelum algoritma =====
long memoryBefore = System.GC.GetTotalMemory(false);
// Setup callbacks before running algorithm
SetupCallbacks(silentMode, ref maxOpenListSize, ref currentOpenListSize,
ref maxClosedListSize, ref currentClosedListSize);
// ===== STOPWATCH START: Pengukuran waktu algoritma =====
Stopwatch algorithmTimer = Stopwatch.StartNew();
// Counter untuk jumlah step yang dilakukan algoritma
int stepCount = 0;
// Execute the pathfinding algorithm synchronously in a single frame without visualization
while (pathFinder.Status == PathFinderStatus.RUNNING)
{
stepCount++;
pathFinder.Step();
}
// ===== STOPWATCH STOP: Akhir pengukuran waktu algoritma =====
algorithmTimer.Stop();
// ===== MEMORY MEASUREMENT END: Ukur memory setelah algoritma =====
long memoryAfter = System.GC.GetTotalMemory(false);
long memoryUsed = memoryAfter - memoryBefore;
float milliseconds = (algorithmTimer.ElapsedTicks * 1000.0f) / Stopwatch.Frequency;
// Calculate path length once and reuse
int pathLength = 0;
int nodesExplored = 0;
float totalGCost = 0;
float totalHCost = 0;
float totalFCost = 0;
// Add memory for path reconstruction (final path)
if (pathFinder.Status == PathFinderStatus.SUCCESS)
{
pathLength = CalculatePathLength();
nodesExplored = pathFinder.ClosedListCount;
// Hitung total G, H, dan F cost
CalculatePathCosts(out totalGCost, out totalHCost, out totalFCost);
}
// Create and send metrics - waktu pengukuran algoritma yang tepat
PathfindingMetrics metrics = new PathfindingMetrics
{
timeTaken = milliseconds, // Waktu algoritma yang diukur dengan stopwatch
pathLength = pathLength,
nodesExplored = nodesExplored,
memoryUsed = memoryUsed,
maxOpenListSize = maxOpenListSize,
maxClosedListSize = maxClosedListSize,
totalGCost = totalGCost,
totalHCost = totalHCost,
totalFCost = totalFCost,
};
// Report metrics before visualization
if (!silentMode)
{
OnPathfindingComplete?.Invoke(metrics);
}
// Path visualization and handling
HandlePathFindingResult(silentMode, pathLength);
// Pastikan untuk mengembalikan nilai di akhir coroutine
yield return null;
}
/// <summary>
/// Setup callbacks for tracking nodes in open/closed lists and visualization
/// </summary>
private void SetupCallbacks(bool silentMode, ref int maxOpenListSize, ref int currentOpenListSize,
ref int maxClosedListSize, ref int currentClosedListSize)
{
// Buat variabel lokal untuk menghindari masalah dengan ref parameter dalam lambda
int localCurrentOpenListSize = currentOpenListSize;
int localMaxOpenListSize = maxOpenListSize;
int localCurrentClosedListSize = currentClosedListSize;
int localMaxClosedListSize = maxClosedListSize;
if (silentMode)
{
// In silent mode, just set minimal callbacks for metrics
pathFinder.onAddToOpenList = (node) =>
{
localCurrentOpenListSize++;
if (localCurrentOpenListSize > localMaxOpenListSize)
localMaxOpenListSize = localCurrentOpenListSize;
};
pathFinder.onAddToClosedList = (node) =>
{
localCurrentClosedListSize++;
if (localCurrentClosedListSize > localMaxClosedListSize)
localMaxClosedListSize = localCurrentClosedListSize;
localCurrentOpenListSize--; // When a node is moved from open to closed list
};
}
else
{
// In regular mode, track and prepare for visualization
pathFinder.onAddToOpenList = (node) =>
{
visualizationSteps.Add(new PathfindingVisualizationStep(
PathfindingVisualizationStep.StepType.OpenList,
node.Location.Value));
localCurrentOpenListSize++;
if (localCurrentOpenListSize > localMaxOpenListSize)
localMaxOpenListSize = localCurrentOpenListSize;
};
pathFinder.onAddToClosedList = (node) =>
{
visualizationSteps.Add(new PathfindingVisualizationStep(
PathfindingVisualizationStep.StepType.ClosedList,
node.Location.Value));
localCurrentClosedListSize++;
if (localCurrentClosedListSize > localMaxClosedListSize)
localMaxClosedListSize = localCurrentClosedListSize;
localCurrentOpenListSize--; // When a node is moved from open to closed list
};
pathFinder.onChangeCurrentNode = (node) =>
{
visualizationSteps.Add(new PathfindingVisualizationStep(
PathfindingVisualizationStep.StepType.CurrentNode,
node.Location.Value));
};
}
// Setelah lambda selesai dijalankan, perbarui variabel ref
maxOpenListSize = localMaxOpenListSize;
currentOpenListSize = localCurrentOpenListSize;
maxClosedListSize = localMaxClosedListSize;
currentClosedListSize = localCurrentClosedListSize;
}
/// <summary>
/// Handle path finding result (success or failure)
/// </summary>
private void HandlePathFindingResult(bool silentMode, int pathLength)
{
if (pathFinder.Status == PathFinderStatus.SUCCESS)
{
OnSuccessPathFinding();
// In non-silent mode, prepare visualization data for the path
if (!silentMode && showVisualization)
{
// Add the path nodes for visualization in efficient batched way
PathFinder<Vector2Int>.PathFinderNode node = pathFinder.CurrentNode;
List<Vector2Int> pathPositions = new List<Vector2Int>(pathLength); // Pre-allocate with known size
// Build path in reverse order
while (node != null)
{
pathPositions.Add(node.Location.Value);
node = node.Parent;
}
// Process path in correct order
for (int i = pathPositions.Count - 1; i >= 0; i--)
{
visualizationSteps.Add(new PathfindingVisualizationStep(
PathfindingVisualizationStep.StepType.FinalPath,
pathPositions[i]));
}
}
}
else if (pathFinder.Status == PathFinderStatus.FAILURE)
{
OnFailurePathFinding();
}
}
/// <summary>
/// Memformat ukuran byte menjadi string yang lebih mudah dibaca
/// </summary>
private string FormatBytes(long bytes)
{
string[] sizes = { "B", "KB", "MB", "GB" };
int order = 0;
double size = bytes;
while (size >= 1024 && order < sizes.Length - 1)
{
order++;
size = size / 1024;
}
return $"{size:0.##} {sizes[order]}";
}
void OnSuccessPathFinding()
{
float totalGCost = 0;
float totalHCost = 0;
float totalFCost = 0;
// Hitung biaya-biaya path menggunakan metode yang sudah ada
CalculatePathCosts(out totalGCost, out totalHCost, out totalFCost);
// Informasi dasar
int pathLength = CalculatePathLength();
}
void OnFailurePathFinding()
{
UnityEngine.Debug.Log("Pathfinding failed");
}
/// <summary>
/// Changes the pathfinding algorithm at runtime
/// </summary>
public void ChangeAlgorithm(PathFinderType newType)
{
// Don't change if pathfinding is in progress
if (pathFinder != null && pathFinder.Status == PathFinderStatus.RUNNING)
{
UnityEngine.Debug.Log("Cannot change algorithm while pathfinding is running");
return;
}
pathFinderType = newType;
// Hitung perkiraan jumlah node dalam grid
int estimatedNodeCount = 0;
if (Map != null)
{
estimatedNodeCount = Map.NumX * Map.NumY;
}
// Create new pathfinder instance
switch (pathFinderType)
{
case PathFinderType.ASTAR:
pathFinder = new AStarPathFinder<Vector2Int>(estimatedNodeCount);
break;
case PathFinderType.DIJKSTRA:
pathFinder = new DijkstraPathFinder<Vector2Int>(estimatedNodeCount);
break;
case PathFinderType.GREEDY:
pathFinder = new GreedyPathFinder<Vector2Int>();
break;
case PathFinderType.BACKTRACKING:
pathFinder = new BacktrackingPathFinder<Vector2Int>();
break;
case PathFinderType.BFS:
pathFinder = new BFSPathFinder<Vector2Int>();
break;
}
// Set up callbacks
pathFinder.onSuccess = OnSuccessPathFinding;
pathFinder.onFailure = OnFailurePathFinding;
// Gunakan setting asli
pathFinder.HeuristicCost = GridMap.GetManhattanCost;
pathFinder.NodeTraversalCost = GridMap.GetEuclideanCost;
}
private int CalculatePathLength()
{
int pathLength = 0;
PathFinder<Vector2Int>.PathFinderNode node = pathFinder.CurrentNode;
while (node != null)
{
pathLength++;
node = node.Parent;
}
return pathLength;
}
IEnumerator VisualizePathfinding()
{
if (!showVisualization)
yield break;
isVisualizingPath = true;
// First, ensure grid is reset
Map.ResetGridNodeColours();
// Visualize each step with a delay - use batch processing for efficiency
int stepCount = visualizationSteps.Count;
int batchSize = Mathf.Min(visualizationBatch, stepCount); // set higher value for faster visualization
for (int i = 0; i < stepCount; i += batchSize)
{
int end = Mathf.Min(i + batchSize, stepCount);
// Process a batch of steps
for (int j = i; j < end; j++)
{
var step = visualizationSteps[j];
GridNodeView gnv = Map.GetGridNodeView(step.position.x, step.position.y);
if (gnv != null)
{
switch (step.type)
{
case PathfindingVisualizationStep.StepType.CurrentNode:
gnv.SetInnerColor(Map.COLOR_CURRENT_NODE);
break;
case PathfindingVisualizationStep.StepType.OpenList:
gnv.SetInnerColor(Map.COLOR_ADD_TO_OPENLIST);
break;
case PathfindingVisualizationStep.StepType.ClosedList:
gnv.SetInnerColor(Map.COLOR_ADD_TO_CLOSEDLIST);
break;
case PathfindingVisualizationStep.StepType.FinalPath:
gnv.SetInnerColor(Map.COLOR_PATH);
// Also add the waypoint when we process the path
if (step.type == PathfindingVisualizationStep.StepType.FinalPath)
{
GridNode pathNode = Map.GetGridNode(step.position.x, step.position.y);
AddWayPoint(pathNode);
}
break;
}
}
}
// Yield after each batch to prevent frame drops
yield return new WaitForSeconds(visualizationSpeed);
}
isVisualizingPath = false;
}
/// <summary>
/// Menghitung biaya G, H, dan F untuk jalur
/// </summary>
private void CalculatePathCosts(out float totalGCost, out float totalHCost, out float totalFCost)
{
// Inisialisasi nilai awal
totalGCost = 0;
totalHCost = 0;
totalFCost = 0;
// Jika tidak ada path yang ditemukan, return nilai 0
if (pathFinder.CurrentNode == null)
return;
// Untuk algoritma yang menggunakan heuristik
bool usesHeuristic = pathFinderType == PathFinderType.ASTAR ||
pathFinderType == PathFinderType.GREEDY;
// Node final berisi total cost jalur
PathFinder<Vector2Int>.PathFinderNode finalNode = pathFinder.CurrentNode;
// G cost adalah biaya sebenarnya dari start ke goal, sudah terakumulasi di node akhir
totalGCost = finalNode.GCost;
// H cost di node final idealnya 0 (sudah di tujuan),
// tapi untuk info lengkap, kita dapat path's H cost dari node awal
if (usesHeuristic)
{
// H cost dari node awal ke tujuan (untuk referensi)
totalHCost = finalNode.HCost;
// F cost adalah G + H di node akhir
totalFCost = finalNode.FCost;
}
else
{
// Algoritma tanpa heuristik (seperti Dijkstra)
totalFCost = totalGCost;
}
//// Hitung rata-rata biaya per langkah untuk analisis
//int pathLength = CalculatePathLength();
//float avgCostPerStep = pathLength > 0 ? totalGCost / pathLength : 0;
}
}

View File

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: e6f1f52749dee394e990900aed6b57ae
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

1477
Assets/Scripts/PathFinder.cs Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: 589db701de40bca46adc805fa76421f5
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View File

@ -0,0 +1,491 @@
using UnityEngine;
using UnityEngine.UI;
using TMPro;
using System.Collections;
using System.IO;
public class PathfindingUIManager : MonoBehaviour
{
[Header("References")]
public GridMap gridMap;
public NPC npc;
[Header("Grid Controls")]
public TMP_InputField gridSizeXInput;
public TMP_InputField gridSizeYInput;
public Button applyGridSizeButton;
public Button generateMazeButton;
[Header("Algorithm Controls")]
public TMP_Dropdown algorithmDropdown;
public Button runPathfindingButton;
public Button resetButton;
[Header("Performance Metrics")]
public TMP_Text timeEstimateText;
public TMP_Text pathLengthText;
public TMP_Text nodesExploredText;
public TMP_Text memoryUsageText;
public TMP_Text cpuUsageText; // Text untuk menampilkan penggunaan CPU
[Header("Map Save/Load")]
public TMP_InputField mapNameInput;
public Button saveButton;
public Button loadButton;
[Header("Application Controls")]
public Button exitButton; // Tombol untuk keluar aplikasi
[Header("Optimization")]
[SerializeField] private bool performWarmup = true;
[SerializeField] private bool showWarmupMessage = false;
[Header("Maze Generator")]
public TMP_Dropdown mazeSizeDropdown;
public TMP_Dropdown mazeDensityDropdown;
// Konstanta untuk perhitungan CPU usage
private const float TARGET_FRAME_TIME_MS = 16.67f; // 60 FPS = 16.67ms per frame
private void Start()
{
// Initialize UI elements
InitializeUI();
// Add listeners
applyGridSizeButton.onClick.AddListener(OnApplyGridSize);
runPathfindingButton.onClick.AddListener(OnRunPathfinding);
resetButton.onClick.AddListener(OnResetPathfinding);
algorithmDropdown.onValueChanged.AddListener(OnAlgorithmChanged);
saveButton.onClick.AddListener(OnSaveMap);
loadButton.onClick.AddListener(OnLoadMap);
// Add exit button listener if the button exists
if (exitButton != null)
exitButton.onClick.AddListener(OnExitApplication);
// Add listener for maze generator
if (generateMazeButton != null)
generateMazeButton.onClick.AddListener(OnGenerateMaze);
// Subscribe to NPC's pathfinding events
npc.OnPathfindingComplete += UpdatePerformanceMetrics;
// Initialize performance metrics
ClearPerformanceMetrics();
// Perform algorithm warmup
if (performWarmup)
{
StartCoroutine(WarmupPathfindingSystem());
}
// Tampilkan lokasi penyimpanan
ShowSaveLocation();
}
private IEnumerator WarmupPathfindingSystem()
{
// Wait one frame to ensure everything is initialized
yield return null;
if (showWarmupMessage)
{
//Debug.Log("Performing pathfinding warmup...");
}
// Get current NPC position
Vector3 npcPos = npc.transform.position;
int startX = (int)(npcPos.x / gridMap.GridNodeWidth);
int startY = (int)(npcPos.y / gridMap.GridNodeHeight);
// Find destination node for warmup (try to use opposite corner)
int destX = gridMap.NumX - 1;
int destY = gridMap.NumY - 1;
// Ensure destination is walkable
GridNode destNode = gridMap.GetGridNode(destX, destY);
if (destNode == null || !destNode.IsWalkable)
{
// Find any walkable node for warmup
for (int x = 0; x < gridMap.NumX; x++)
{
for (int y = 0; y < gridMap.NumY; y++)
{
GridNode testNode = gridMap.GetGridNode(x, y);
if (testNode != null && testNode.IsWalkable && (x != startX || y != startY))
{
destX = x;
destY = y;
destNode = testNode;
break;
}
}
if (destNode != null && destNode.IsWalkable)
break;
}
}
// Save current destination position
Vector3 originalDestPos = gridMap.Destination.position;
// Set temporary destination for warmup
gridMap.SetDestination(destX, destY);
// Run pathfinding quietly (without visualization)
GridNode startNode = gridMap.GetGridNode(startX, startY);
if (startNode != null && destNode != null && destNode.IsWalkable)
{
// Temporarily disable visualization for warmup
float originalVisualizationSpeed = npc.visualizationSpeed;
npc.visualizationSpeed = 0f;
bool originalShowVisualization = npc.showVisualization;
npc.showVisualization = false;
// Do warmup for each algorithm type to JIT compile all code paths
foreach (NPC.PathFinderType algoType in System.Enum.GetValues(typeof(NPC.PathFinderType)))
{
// Save current algorithm
NPC.PathFinderType originalAlgorithm = npc.pathFinderType;
// Change to this algorithm
npc.ChangeAlgorithm(algoType);
// Run silent pathfinding
npc.MoveTo(destNode, true);
// Wait a bit to ensure completion
yield return new WaitForSeconds(0.05f);
// Reset back to original algorithm
npc.ChangeAlgorithm(originalAlgorithm);
}
// Restore visualization settings
npc.visualizationSpeed = originalVisualizationSpeed;
npc.showVisualization = originalShowVisualization;
}
// Restore original destination
gridMap.Destination.position = originalDestPos;
// Clear metrics from warmup
ClearPerformanceMetrics();
if (showWarmupMessage)
{
//Debug.Log("Pathfinding warmup complete");
}
// Reset grid colors
gridMap.ResetGridNodeColours();
}
private void OnDestroy()
{
// Unsubscribe from events
if (npc != null)
{
npc.OnPathfindingComplete -= UpdatePerformanceMetrics;
}
}
private void InitializeUI()
{
// Set initial values
gridSizeXInput.text = gridMap.NumX.ToString();
gridSizeYInput.text = gridMap.NumY.ToString();
// Setup algorithm dropdown
algorithmDropdown.ClearOptions();
algorithmDropdown.AddOptions(new System.Collections.Generic.List<string> {
"A*",
"Dijkstra",
"Greedy Best-First",
"Backtracking",
"BFS"
});
// Setup maze size dropdown
if (mazeSizeDropdown != null)
{
mazeSizeDropdown.ClearOptions();
mazeSizeDropdown.AddOptions(new System.Collections.Generic.List<string> {
"Small",
"Medium",
"Big"
});
}
// Setup maze density dropdown
if (mazeDensityDropdown != null)
{
mazeDensityDropdown.ClearOptions();
mazeDensityDropdown.AddOptions(new System.Collections.Generic.List<string> {
"Low",
"Medium",
"High"
});
}
ClearPerformanceMetrics();
}
private void ClearPerformanceMetrics()
{
timeEstimateText.text = "0";
pathLengthText.text = "0";
memoryUsageText.text = "0";
nodesExploredText.text = "0";
cpuUsageText.text = "0%";
}
private void UpdatePerformanceMetrics(PathfindingMetrics metrics)
{
timeEstimateText.text = $"{metrics.timeTaken:F2} ms";
pathLengthText.text = $"{metrics.pathLength} nodes";
nodesExploredText.text = $"{metrics.nodesExplored} nodes";
memoryUsageText.text = FormatBytes(metrics.memoryUsed);
// Hitung dan tampilkan CPU usage
if (cpuUsageText != null)
{
float cpuUsagePercentage = (metrics.timeTaken / TARGET_FRAME_TIME_MS) * 100f;
cpuUsageText.text = $"{cpuUsagePercentage:F2}%";
}
}
private string FormatBytes(long bytes)
{
string[] sizes = { "B", "KB", "MB", "GB" };
int order = 0;
double size = bytes;
while (size >= 1024 && order < sizes.Length - 1)
{
order++;
size = size / 1024;
}
return $"{size:0.##} {sizes[order]}";
}
private void OnApplyGridSize()
{
if (int.TryParse(gridSizeXInput.text, out int newSizeX) &&
int.TryParse(gridSizeYInput.text, out int newSizeY))
{
gridMap.ResizeGrid(newSizeX, newSizeY);
ClearPerformanceMetrics();
}
}
private void OnRunPathfinding()
{
// Get current NPC position
Vector3 npcPos = npc.transform.position;
int startX = (int)(npcPos.x / gridMap.GridNodeWidth);
int startY = (int)(npcPos.y / gridMap.GridNodeHeight);
// Get destination position
Vector3 destPos = gridMap.Destination.position;
int destX = (int)(destPos.x / gridMap.GridNodeWidth);
int destY = (int)(destPos.y / gridMap.GridNodeHeight);
// Run pathfinding
GridNode startNode = gridMap.GetGridNode(startX, startY);
GridNode endNode = gridMap.GetGridNode(destX, destY);
if (startNode != null && endNode != null)
{
ClearPerformanceMetrics();
npc.MoveTo(endNode);
}
}
private void OnResetPathfinding()
{
// Reload the current scene
UnityEngine.SceneManagement.SceneManager.LoadScene(
UnityEngine.SceneManagement.SceneManager.GetActiveScene().name);
//Debug.Log("Reloading scene...");
}
private void OnAlgorithmChanged(int index)
{
NPC.PathFinderType newType = (NPC.PathFinderType)index;
npc.ChangeAlgorithm(newType);
ClearPerformanceMetrics();
}
private void OnSaveMap()
{
if (string.IsNullOrEmpty(mapNameInput.text))
{
//Debug.LogWarning("Please enter a map name before saving");
return;
}
// Buat direktori jika belum ada
string saveDirectory = Path.Combine(Application.persistentDataPath, "GridSaves");
if (!Directory.Exists(saveDirectory))
{
Directory.CreateDirectory(saveDirectory);
}
string filePath = Path.Combine(saveDirectory, $"{mapNameInput.text}.json");
gridMap.SaveGridState(filePath);
Debug.Log($"Map saved to: {filePath}");
}
/// <summary>
/// Membuka folder penyimpanan di File Explorer
/// </summary>
public void OpenSaveFolder()
{
string saveDirectory = Path.Combine(Application.persistentDataPath, "GridSaves");
// Buat direktori jika belum ada
if (!Directory.Exists(saveDirectory))
{
Directory.CreateDirectory(saveDirectory);
}
// Buka folder di file explorer
System.Diagnostics.Process.Start("explorer.exe", saveDirectory);
}
private void OnLoadMap()
{
if (string.IsNullOrEmpty(mapNameInput.text))
{
return;
}
string saveDirectory = Path.Combine(Application.persistentDataPath, "GridSaves");
string filePath = Path.Combine(saveDirectory, $"{mapNameInput.text}.json");
if (!File.Exists(filePath))
{
//Debug.LogWarning($"Map file not found: {filePath}");
return;
}
gridMap.LoadGridState(filePath);
ClearPerformanceMetrics();
//Debug.Log($"Map loaded from: {filePath}");
}
/// <summary>
/// Generates a random maze with the selected size and density
/// </summary>
private void OnGenerateMaze()
{
// Get selected maze size
int sizeX = 20;
int sizeY = 20;
bool isLargeGrid = false;
switch (mazeSizeDropdown.value)
{
case 0: // Kecil
sizeX = sizeY = 20;
break;
case 1: // Sedang
sizeX = sizeY = 50;
break;
case 2: // Besar
sizeX = sizeY = 100;
isLargeGrid = true;
break;
}
// Resize grid if needed
if (gridMap.NumX != sizeX || gridMap.NumY != sizeY)
{
gridMap.ResizeGrid(sizeX, sizeY);
// Update grid size inputs
gridSizeXInput.text = sizeX.ToString();
gridSizeYInput.text = sizeY.ToString();
}
// Get selected density
float density = 30f; // Default medium
switch (mazeDensityDropdown.value)
{
case 0: // Low
density = 10f;
break;
case 1: // Medium
density = 30f;
break;
case 2: // High
density = 50f;
break;
}
// Untuk grid besar, nonaktifkan visualisasi sementara untuk performa lebih baik
bool originalShowVisualization = false;
float originalVisualizationSpeed = 0f;
if (isLargeGrid && npc != null)
{
// Simpan nilai asli
originalShowVisualization = npc.showVisualization;
originalVisualizationSpeed = npc.visualizationSpeed;
// Nonaktifkan visualisasi untuk grid besar
npc.showVisualization = false;
}
// Generate the maze with selected density
gridMap.GenerateRandomMaze(density);
// Kembalikan nilai visualisasi jika diubah
if (isLargeGrid && npc != null)
{
npc.showVisualization = originalShowVisualization;
npc.visualizationSpeed = originalVisualizationSpeed;
}
// Clear performance metrics
ClearPerformanceMetrics();
// Tampilkan pesan khusus untuk grid besar
if (isLargeGrid)
{
//Debug.Log("Large maze generated. For best performance, consider disabling visualization during pathfinding.");
}
//Debug.Log($"Generated maze with size {sizeX}x{sizeY} and density {density}%");
}
/// <summary>
/// Menampilkan lokasi penyimpanan file di konsol
/// </summary>
private void ShowSaveLocation()
{
string saveDirectory = Path.Combine(Application.persistentDataPath, "GridSaves");
}
/// <summary>
/// Menutup aplikasi saat tombol exit ditekan
/// </summary>
public void OnExitApplication()
{
#if UNITY_EDITOR
// Jika di Unity Editor
UnityEditor.EditorApplication.isPlaying = false;
#else
// Jika di build
Application.Quit();
#endif
Debug.Log("Application exit requested");
}
}

View File

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: d7d82750f198246419d2d370cf23f97b
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

View File

@ -0,0 +1,148 @@
using System;
using System.Collections.Generic;
/// <summary>
/// Implementasi generic Priority Queue (Antrean Prioritas) menggunakan min-heap.
/// Memungkinkan operasi enqueue, dequeue, dan update priority dengan efisien.
/// </summary>
/// <typeparam name="TElement">Tipe elemen yang disimpan dalam antrean</typeparam>
/// <typeparam name="TPriority">Tipe prioritas yang digunakan, harus implementasi IComparable</typeparam>
public class PriorityQueue<TElement, TPriority> where TPriority : IComparable<TPriority>
{
// Menyimpan pasangan elemen dan prioritasnya dalam struktur heap
private List<Tuple<TElement, TPriority>> elements = new List<Tuple<TElement, TPriority>>();
// Menyimpan indeks setiap elemen dalam heap untuk akses cepat
private Dictionary<TElement, int> elementIndexMap = new Dictionary<TElement, int>();
/// <summary>
/// Mendapatkan jumlah elemen dalam antrean prioritas
/// </summary>
public int Count => elements.Count;
/// <summary>
/// Menambahkan elemen baru ke dalam antrean prioritas dengan prioritas tertentu
/// </summary>
/// <param name="element">Elemen yang akan ditambahkan</param>
/// <param name="priority">Prioritas dari elemen</param>
public void Enqueue(TElement element, TPriority priority)
{
elements.Add(Tuple.Create(element, priority));
elementIndexMap[element] = elements.Count - 1;
HeapifyUp(elements.Count - 1);
}
/// <summary>
/// Mengambil dan menghapus elemen dengan prioritas tertinggi (nilai terkecil)
/// dari antrean prioritas
/// </summary>
/// <returns>Elemen dengan prioritas tertinggi</returns>
/// <exception cref="InvalidOperationException">Dilempar jika antrean kosong</exception>
public TElement Dequeue()
{
if (elements.Count == 0)
throw new InvalidOperationException("The priority queue is empty.");
var element = elements[0].Item1;
var last = elements[elements.Count - 1];
elements.RemoveAt(elements.Count - 1);
if (elements.Count > 0)
{
// Pindahkan elemen terakhir ke root, lalu atur ulang heap
elements[0] = last;
elementIndexMap[last.Item1] = 0;
HeapifyDown(0);
}
elementIndexMap.Remove(element);
return element;
}
/// <summary>
/// Memperbarui prioritas elemen yang sudah ada dalam antrean
/// </summary>
/// <param name="element">Elemen yang akan diperbarui prioritasnya</param>
/// <param name="newPriority">Nilai prioritas baru</param>
/// <exception cref="InvalidOperationException">Dilempar jika elemen tidak ditemukan</exception>
public void UpdatePriority(TElement element, TPriority newPriority)
{
if (!elementIndexMap.ContainsKey(element))
throw new InvalidOperationException("Element not found in priority queue.");
var index = elementIndexMap[element];
var oldPriority = elements[index].Item2;
elements[index] = Tuple.Create(element, newPriority);
// Jika prioritas baru lebih tinggi (nilai lebih kecil), heapify up
if (newPriority.CompareTo(oldPriority) < 0)
{
HeapifyUp(index);
}
// Jika prioritas baru lebih rendah (nilai lebih besar), heapify down
else
{
HeapifyDown(index);
}
}
/// <summary>
/// Mempertahankan properti heap dengan memindahkan elemen ke atas jika
/// prioritasnya lebih tinggi dari parent
/// </summary>
/// <param name="index">Indeks elemen yang akan dipindahkan ke atas</param>
private void HeapifyUp(int index)
{
var parentIndex = (index - 1) / 2;
if (index > 0 && elements[index].Item2.CompareTo(elements[parentIndex].Item2) < 0)
{
Swap(index, parentIndex);
HeapifyUp(parentIndex);
}
}
/// <summary>
/// Mempertahankan properti heap dengan memindahkan elemen ke bawah jika
/// prioritasnya lebih rendah dari child
/// </summary>
/// <param name="index">Indeks elemen yang akan dipindahkan ke bawah</param>
private void HeapifyDown(int index)
{
var leftChildIndex = 2 * index + 1;
var rightChildIndex = 2 * index + 2;
var smallest = index;
// Cari child dengan prioritas tertinggi (nilai terkecil)
if (leftChildIndex < elements.Count && elements[leftChildIndex].Item2.CompareTo(elements[smallest].Item2) < 0)
{
smallest = leftChildIndex;
}
if (rightChildIndex < elements.Count && elements[rightChildIndex].Item2.CompareTo(elements[smallest].Item2) < 0)
{
smallest = rightChildIndex;
}
// Jika child memiliki prioritas lebih tinggi, tukar dan lanjutkan heapify down
if (smallest != index)
{
Swap(index, smallest);
HeapifyDown(smallest);
}
}
/// <summary>
/// Menukar posisi dua elemen dalam heap dan memperbarui elementIndexMap
/// </summary>
/// <param name="i">Indeks elemen pertama</param>
/// <param name="j">Indeks elemen kedua</param>
private void Swap(int i, int j)
{
var temp = elements[i];
elements[i] = elements[j];
elements[j] = temp;
// Perbarui elementIndexMap untuk mencerminkan posisi baru
elementIndexMap[elements[i].Item1] = i;
elementIndexMap[elements[j].Item1] = j;
}
}

View File

@ -0,0 +1,11 @@
fileFormatVersion: 2
guid: bc44be66e24c4c646b2de99fb912d211
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant: