mirror of
https://github.com/BobbyRafael31/Unity-MazeRunner-Pathfinding-Visualizer.git
synced 2025-08-13 08:52:21 +00:00
Initial commit
This commit is contained in:
643
Assets/Scripts/NPC.cs
Normal file
643
Assets/Scripts/NPC.cs
Normal file
@ -0,0 +1,643 @@
|
||||
using PathFinding;
|
||||
using System;
|
||||
using System.Collections;
|
||||
using System.Collections.Generic;
|
||||
using System.Diagnostics;
|
||||
using UnityEngine;
|
||||
|
||||
public struct PathfindingMetrics
|
||||
{
|
||||
// Untuk Pengukuran Kinerja
|
||||
public float timeTaken; // in milliseconds
|
||||
public int pathLength;
|
||||
public int nodesExplored; // number of nodes in path
|
||||
public long memoryUsed; // memory used by pathfinding in bytes
|
||||
|
||||
// Untuk Visualisasi
|
||||
public int maxOpenListSize; // maximum size of open list during pathfinding
|
||||
public int maxClosedListSize; // maximum size of closed list during pathfinding
|
||||
|
||||
// Tambahan untuk cost metrics
|
||||
public float totalGCost; // Total biaya G untuk jalur (jarak sebenarnya)
|
||||
public float totalHCost; // Total biaya H untuk jalur (heuristik)
|
||||
public float totalFCost; // Total biaya F untuk jalur (G + H)
|
||||
|
||||
}
|
||||
|
||||
public class NPC : MonoBehaviour
|
||||
{
|
||||
public float speed = 2.0f;
|
||||
public Queue<Vector2> wayPoints = new Queue<Vector2>();
|
||||
|
||||
// Event that fires when pathfinding is complete with performance metrics
|
||||
public event Action<PathfindingMetrics> OnPathfindingComplete;
|
||||
|
||||
public enum PathFinderType
|
||||
{
|
||||
ASTAR,
|
||||
DIJKSTRA,
|
||||
GREEDY,
|
||||
BACKTRACKING,
|
||||
BFS,
|
||||
}
|
||||
|
||||
[SerializeField]
|
||||
public PathFinderType pathFinderType = PathFinderType.ASTAR;
|
||||
|
||||
PathFinder<Vector2Int> pathFinder = null;
|
||||
|
||||
public GridMap Map { get; set; }
|
||||
|
||||
// List to store all steps for visualization playback
|
||||
private List<PathfindingVisualizationStep> visualizationSteps = new List<PathfindingVisualizationStep>();
|
||||
private bool isVisualizingPath = false;
|
||||
|
||||
// Properties to control visualization
|
||||
[SerializeField]
|
||||
|
||||
// Visualization speed is time between visualization steps
|
||||
public float visualizationSpeed = 0.0f; // Default 0; set higher for slower visualization
|
||||
|
||||
// Visualization batch is the number of steps to visualize at once
|
||||
public int visualizationBatch = 1; // Default 1; set higher value for faster visualization
|
||||
|
||||
[SerializeField]
|
||||
public bool showVisualization = true; // Whether to show visualization at all
|
||||
|
||||
// Struct to store each step of the pathfinding process for visualization
|
||||
private struct PathfindingVisualizationStep
|
||||
{
|
||||
public enum StepType { CurrentNode, OpenList, ClosedList, FinalPath }
|
||||
public StepType type;
|
||||
public Vector2Int position;
|
||||
|
||||
public PathfindingVisualizationStep(StepType type, Vector2Int position)
|
||||
{
|
||||
this.type = type;
|
||||
this.position = position;
|
||||
}
|
||||
}
|
||||
|
||||
private IEnumerator Coroutine_MoveOverSeconds(GameObject objectToMove, Vector3 end, float seconds)
|
||||
{
|
||||
float elaspedTime = 0.0f;
|
||||
Vector3 startingPos = objectToMove.transform.position;
|
||||
|
||||
while (elaspedTime < seconds)
|
||||
{
|
||||
objectToMove.transform.position =
|
||||
Vector3.Lerp(startingPos, end, elaspedTime / seconds);
|
||||
elaspedTime += Time.deltaTime;
|
||||
|
||||
yield return new WaitForEndOfFrame();
|
||||
}
|
||||
objectToMove.transform.position = end;
|
||||
}
|
||||
|
||||
IEnumerator Coroutine_MoveToPoint(Vector2 p, float speed)
|
||||
{
|
||||
Vector3 endP = new Vector3(p.x, p.y, transform.position.z);
|
||||
float duration = (transform.position - endP).magnitude / speed;
|
||||
|
||||
yield return StartCoroutine(
|
||||
Coroutine_MoveOverSeconds(
|
||||
transform.gameObject, endP, duration));
|
||||
}
|
||||
|
||||
public IEnumerator Coroutine_MoveTo()
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
while (wayPoints.Count > 0)
|
||||
{
|
||||
yield return StartCoroutine(
|
||||
Coroutine_MoveToPoint(
|
||||
wayPoints.Dequeue(),
|
||||
speed));
|
||||
}
|
||||
yield return null;
|
||||
}
|
||||
}
|
||||
|
||||
private void AddWayPoint(GridNode node)
|
||||
{
|
||||
wayPoints.Enqueue(new Vector2(
|
||||
node.Value.x * Map.GridNodeWidth,
|
||||
node.Value.y * Map.GridNodeHeight));
|
||||
|
||||
// We set a color to show the path.
|
||||
GridNodeView gnv = Map.GetGridNodeView(node.Value.x, node.Value.y);
|
||||
gnv.SetInnerColor(Map.COLOR_PATH);
|
||||
}
|
||||
|
||||
public void SetStartNode(GridNode node)
|
||||
{
|
||||
wayPoints.Clear();
|
||||
transform.position = new Vector3(
|
||||
node.Value.x * Map.GridNodeWidth,
|
||||
node.Value.y * Map.GridNodeHeight,
|
||||
transform.position.z);
|
||||
}
|
||||
|
||||
private void Start()
|
||||
{
|
||||
// Initialize pathfinder based on type
|
||||
InitializePathFinder();
|
||||
|
||||
// Start the movement coroutine
|
||||
StartCoroutine(Coroutine_MoveTo());
|
||||
}
|
||||
|
||||
private void InitializePathFinder()
|
||||
{
|
||||
// Hitung perkiraan jumlah node dalam grid
|
||||
int estimatedNodeCount = 0;
|
||||
if (Map != null)
|
||||
{
|
||||
estimatedNodeCount = Map.NumX * Map.NumY;
|
||||
}
|
||||
|
||||
// Log informasi ukuran grid dan strategi optimisasi
|
||||
bool isLargeGrid = estimatedNodeCount > 2500;
|
||||
|
||||
// Create new pathfinder instance
|
||||
switch (pathFinderType)
|
||||
{
|
||||
case PathFinderType.ASTAR:
|
||||
pathFinder = new AStarPathFinder<Vector2Int>(estimatedNodeCount);
|
||||
break;
|
||||
case PathFinderType.DIJKSTRA:
|
||||
pathFinder = new DijkstraPathFinder<Vector2Int>(estimatedNodeCount);
|
||||
break;
|
||||
case PathFinderType.GREEDY:
|
||||
pathFinder = new GreedyPathFinder<Vector2Int>();
|
||||
break;
|
||||
case PathFinderType.BACKTRACKING:
|
||||
pathFinder = new BacktrackingPathFinder<Vector2Int>();
|
||||
break;
|
||||
case PathFinderType.BFS:
|
||||
pathFinder = new BFSPathFinder<Vector2Int>();
|
||||
break;
|
||||
}
|
||||
|
||||
// Set up callbacks
|
||||
pathFinder.onSuccess = OnSuccessPathFinding;
|
||||
pathFinder.onFailure = OnFailurePathFinding;
|
||||
|
||||
// Gunakan setting asli
|
||||
pathFinder.HeuristicCost = GridMap.GetManhattanCost;
|
||||
pathFinder.NodeTraversalCost = GridMap.GetEuclideanCost;
|
||||
}
|
||||
|
||||
public void MoveTo(GridNode destination, bool silentMode = false)
|
||||
{
|
||||
// inialisaasi pathfinder jika belum ada
|
||||
if (pathFinder == null)
|
||||
{
|
||||
InitializePathFinder();
|
||||
}
|
||||
|
||||
|
||||
if (pathFinder.Status == PathFinderStatus.RUNNING)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
GridNode start = Map.GetGridNode(
|
||||
(int)(transform.position.x / Map.GridNodeWidth),
|
||||
(int)(transform.position.y / Map.GridNodeHeight));
|
||||
|
||||
if (start == null || destination == null)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
SetStartNode(start);
|
||||
|
||||
// Reset grid colors
|
||||
if (!silentMode)
|
||||
{
|
||||
Map.ResetGridNodeColours();
|
||||
}
|
||||
|
||||
visualizationSteps.Clear();
|
||||
isVisualizingPath = false;
|
||||
|
||||
// jika gagal menginisialisasi pathfinder, tidak perlu melanjutkan
|
||||
if (!pathFinder.Initialise(start, destination))
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
StartCoroutine(Coroutine_FindPathStep(silentMode));
|
||||
}
|
||||
|
||||
IEnumerator Coroutine_FindPathStep(bool silentMode = false)
|
||||
{
|
||||
yield return StartCoroutine(MeasurePerformance(silentMode));
|
||||
|
||||
// Start visualization after calculation is complete
|
||||
if (pathFinder.Status == PathFinderStatus.SUCCESS && showVisualization && !silentMode)
|
||||
{
|
||||
yield return StartCoroutine(VisualizePathfinding());
|
||||
}
|
||||
}
|
||||
|
||||
IEnumerator MeasurePerformance(bool silentMode = false)
|
||||
{
|
||||
// Memory tracking for pathfinding structures - tetap untuk visualisasi
|
||||
int maxOpenListSize = 0;
|
||||
int currentOpenListSize = 0;
|
||||
int maxClosedListSize = 0;
|
||||
int currentClosedListSize = 0;
|
||||
|
||||
// Pre-allocate visualizationSteps with estimated capacity to avoid reallocations
|
||||
visualizationSteps = new List<PathfindingVisualizationStep>(4);
|
||||
|
||||
// ===== MEMORY MEASUREMENT START: Ukur memory sebelum algoritma =====
|
||||
long memoryBefore = System.GC.GetTotalMemory(false);
|
||||
|
||||
// Setup callbacks before running algorithm
|
||||
SetupCallbacks(silentMode, ref maxOpenListSize, ref currentOpenListSize,
|
||||
ref maxClosedListSize, ref currentClosedListSize);
|
||||
|
||||
// ===== STOPWATCH START: Pengukuran waktu algoritma =====
|
||||
Stopwatch algorithmTimer = Stopwatch.StartNew();
|
||||
|
||||
// Counter untuk jumlah step yang dilakukan algoritma
|
||||
int stepCount = 0;
|
||||
|
||||
// Execute the pathfinding algorithm synchronously in a single frame without visualization
|
||||
while (pathFinder.Status == PathFinderStatus.RUNNING)
|
||||
{
|
||||
stepCount++;
|
||||
pathFinder.Step();
|
||||
}
|
||||
|
||||
// ===== STOPWATCH STOP: Akhir pengukuran waktu algoritma =====
|
||||
algorithmTimer.Stop();
|
||||
|
||||
// ===== MEMORY MEASUREMENT END: Ukur memory setelah algoritma =====
|
||||
long memoryAfter = System.GC.GetTotalMemory(false);
|
||||
long memoryUsed = memoryAfter - memoryBefore;
|
||||
|
||||
float milliseconds = (algorithmTimer.ElapsedTicks * 1000.0f) / Stopwatch.Frequency;
|
||||
|
||||
// Calculate path length once and reuse
|
||||
int pathLength = 0;
|
||||
int nodesExplored = 0;
|
||||
float totalGCost = 0;
|
||||
float totalHCost = 0;
|
||||
float totalFCost = 0;
|
||||
|
||||
// Add memory for path reconstruction (final path)
|
||||
if (pathFinder.Status == PathFinderStatus.SUCCESS)
|
||||
{
|
||||
pathLength = CalculatePathLength();
|
||||
nodesExplored = pathFinder.ClosedListCount;
|
||||
|
||||
// Hitung total G, H, dan F cost
|
||||
CalculatePathCosts(out totalGCost, out totalHCost, out totalFCost);
|
||||
}
|
||||
|
||||
// Create and send metrics - waktu pengukuran algoritma yang tepat
|
||||
PathfindingMetrics metrics = new PathfindingMetrics
|
||||
{
|
||||
timeTaken = milliseconds, // Waktu algoritma yang diukur dengan stopwatch
|
||||
pathLength = pathLength,
|
||||
nodesExplored = nodesExplored,
|
||||
memoryUsed = memoryUsed,
|
||||
maxOpenListSize = maxOpenListSize,
|
||||
maxClosedListSize = maxClosedListSize,
|
||||
totalGCost = totalGCost,
|
||||
totalHCost = totalHCost,
|
||||
totalFCost = totalFCost,
|
||||
};
|
||||
|
||||
// Report metrics before visualization
|
||||
if (!silentMode)
|
||||
{
|
||||
OnPathfindingComplete?.Invoke(metrics);
|
||||
}
|
||||
|
||||
// Path visualization and handling
|
||||
HandlePathFindingResult(silentMode, pathLength);
|
||||
|
||||
// Pastikan untuk mengembalikan nilai di akhir coroutine
|
||||
yield return null;
|
||||
}
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// Setup callbacks for tracking nodes in open/closed lists and visualization
|
||||
/// </summary>
|
||||
private void SetupCallbacks(bool silentMode, ref int maxOpenListSize, ref int currentOpenListSize,
|
||||
ref int maxClosedListSize, ref int currentClosedListSize)
|
||||
{
|
||||
// Buat variabel lokal untuk menghindari masalah dengan ref parameter dalam lambda
|
||||
int localCurrentOpenListSize = currentOpenListSize;
|
||||
int localMaxOpenListSize = maxOpenListSize;
|
||||
int localCurrentClosedListSize = currentClosedListSize;
|
||||
int localMaxClosedListSize = maxClosedListSize;
|
||||
|
||||
if (silentMode)
|
||||
{
|
||||
// In silent mode, just set minimal callbacks for metrics
|
||||
pathFinder.onAddToOpenList = (node) =>
|
||||
{
|
||||
localCurrentOpenListSize++;
|
||||
if (localCurrentOpenListSize > localMaxOpenListSize)
|
||||
localMaxOpenListSize = localCurrentOpenListSize;
|
||||
};
|
||||
|
||||
pathFinder.onAddToClosedList = (node) =>
|
||||
{
|
||||
localCurrentClosedListSize++;
|
||||
if (localCurrentClosedListSize > localMaxClosedListSize)
|
||||
localMaxClosedListSize = localCurrentClosedListSize;
|
||||
localCurrentOpenListSize--; // When a node is moved from open to closed list
|
||||
};
|
||||
}
|
||||
else
|
||||
{
|
||||
// In regular mode, track and prepare for visualization
|
||||
pathFinder.onAddToOpenList = (node) =>
|
||||
{
|
||||
visualizationSteps.Add(new PathfindingVisualizationStep(
|
||||
PathfindingVisualizationStep.StepType.OpenList,
|
||||
node.Location.Value));
|
||||
|
||||
localCurrentOpenListSize++;
|
||||
if (localCurrentOpenListSize > localMaxOpenListSize)
|
||||
localMaxOpenListSize = localCurrentOpenListSize;
|
||||
};
|
||||
|
||||
pathFinder.onAddToClosedList = (node) =>
|
||||
{
|
||||
visualizationSteps.Add(new PathfindingVisualizationStep(
|
||||
PathfindingVisualizationStep.StepType.ClosedList,
|
||||
node.Location.Value));
|
||||
|
||||
localCurrentClosedListSize++;
|
||||
if (localCurrentClosedListSize > localMaxClosedListSize)
|
||||
localMaxClosedListSize = localCurrentClosedListSize;
|
||||
|
||||
localCurrentOpenListSize--; // When a node is moved from open to closed list
|
||||
};
|
||||
|
||||
pathFinder.onChangeCurrentNode = (node) =>
|
||||
{
|
||||
visualizationSteps.Add(new PathfindingVisualizationStep(
|
||||
PathfindingVisualizationStep.StepType.CurrentNode,
|
||||
node.Location.Value));
|
||||
};
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
// Setelah lambda selesai dijalankan, perbarui variabel ref
|
||||
maxOpenListSize = localMaxOpenListSize;
|
||||
currentOpenListSize = localCurrentOpenListSize;
|
||||
maxClosedListSize = localMaxClosedListSize;
|
||||
currentClosedListSize = localCurrentClosedListSize;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Handle path finding result (success or failure)
|
||||
/// </summary>
|
||||
private void HandlePathFindingResult(bool silentMode, int pathLength)
|
||||
{
|
||||
|
||||
if (pathFinder.Status == PathFinderStatus.SUCCESS)
|
||||
{
|
||||
OnSuccessPathFinding();
|
||||
|
||||
// In non-silent mode, prepare visualization data for the path
|
||||
if (!silentMode && showVisualization)
|
||||
{
|
||||
// Add the path nodes for visualization in efficient batched way
|
||||
PathFinder<Vector2Int>.PathFinderNode node = pathFinder.CurrentNode;
|
||||
List<Vector2Int> pathPositions = new List<Vector2Int>(pathLength); // Pre-allocate with known size
|
||||
|
||||
// Build path in reverse order
|
||||
while (node != null)
|
||||
{
|
||||
pathPositions.Add(node.Location.Value);
|
||||
node = node.Parent;
|
||||
}
|
||||
|
||||
// Process path in correct order
|
||||
for (int i = pathPositions.Count - 1; i >= 0; i--)
|
||||
{
|
||||
visualizationSteps.Add(new PathfindingVisualizationStep(
|
||||
PathfindingVisualizationStep.StepType.FinalPath,
|
||||
pathPositions[i]));
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (pathFinder.Status == PathFinderStatus.FAILURE)
|
||||
{
|
||||
OnFailurePathFinding();
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Memformat ukuran byte menjadi string yang lebih mudah dibaca
|
||||
/// </summary>
|
||||
private string FormatBytes(long bytes)
|
||||
{
|
||||
string[] sizes = { "B", "KB", "MB", "GB" };
|
||||
int order = 0;
|
||||
double size = bytes;
|
||||
while (size >= 1024 && order < sizes.Length - 1)
|
||||
{
|
||||
order++;
|
||||
size = size / 1024;
|
||||
}
|
||||
return $"{size:0.##} {sizes[order]}";
|
||||
}
|
||||
|
||||
void OnSuccessPathFinding()
|
||||
{
|
||||
float totalGCost = 0;
|
||||
float totalHCost = 0;
|
||||
float totalFCost = 0;
|
||||
|
||||
// Hitung biaya-biaya path menggunakan metode yang sudah ada
|
||||
CalculatePathCosts(out totalGCost, out totalHCost, out totalFCost);
|
||||
|
||||
// Informasi dasar
|
||||
int pathLength = CalculatePathLength();
|
||||
|
||||
}
|
||||
|
||||
void OnFailurePathFinding()
|
||||
{
|
||||
UnityEngine.Debug.Log("Pathfinding failed");
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Changes the pathfinding algorithm at runtime
|
||||
/// </summary>
|
||||
public void ChangeAlgorithm(PathFinderType newType)
|
||||
{
|
||||
// Don't change if pathfinding is in progress
|
||||
if (pathFinder != null && pathFinder.Status == PathFinderStatus.RUNNING)
|
||||
{
|
||||
UnityEngine.Debug.Log("Cannot change algorithm while pathfinding is running");
|
||||
return;
|
||||
}
|
||||
|
||||
pathFinderType = newType;
|
||||
|
||||
// Hitung perkiraan jumlah node dalam grid
|
||||
int estimatedNodeCount = 0;
|
||||
if (Map != null)
|
||||
{
|
||||
estimatedNodeCount = Map.NumX * Map.NumY;
|
||||
}
|
||||
|
||||
// Create new pathfinder instance
|
||||
switch (pathFinderType)
|
||||
{
|
||||
case PathFinderType.ASTAR:
|
||||
pathFinder = new AStarPathFinder<Vector2Int>(estimatedNodeCount);
|
||||
break;
|
||||
case PathFinderType.DIJKSTRA:
|
||||
pathFinder = new DijkstraPathFinder<Vector2Int>(estimatedNodeCount);
|
||||
break;
|
||||
case PathFinderType.GREEDY:
|
||||
pathFinder = new GreedyPathFinder<Vector2Int>();
|
||||
break;
|
||||
case PathFinderType.BACKTRACKING:
|
||||
pathFinder = new BacktrackingPathFinder<Vector2Int>();
|
||||
break;
|
||||
case PathFinderType.BFS:
|
||||
pathFinder = new BFSPathFinder<Vector2Int>();
|
||||
break;
|
||||
}
|
||||
|
||||
// Set up callbacks
|
||||
pathFinder.onSuccess = OnSuccessPathFinding;
|
||||
pathFinder.onFailure = OnFailurePathFinding;
|
||||
|
||||
// Gunakan setting asli
|
||||
pathFinder.HeuristicCost = GridMap.GetManhattanCost;
|
||||
pathFinder.NodeTraversalCost = GridMap.GetEuclideanCost;
|
||||
}
|
||||
|
||||
private int CalculatePathLength()
|
||||
{
|
||||
int pathLength = 0;
|
||||
PathFinder<Vector2Int>.PathFinderNode node = pathFinder.CurrentNode;
|
||||
while (node != null)
|
||||
{
|
||||
pathLength++;
|
||||
node = node.Parent;
|
||||
}
|
||||
return pathLength;
|
||||
}
|
||||
|
||||
IEnumerator VisualizePathfinding()
|
||||
{
|
||||
if (!showVisualization)
|
||||
yield break;
|
||||
|
||||
isVisualizingPath = true;
|
||||
|
||||
// First, ensure grid is reset
|
||||
Map.ResetGridNodeColours();
|
||||
|
||||
// Visualize each step with a delay - use batch processing for efficiency
|
||||
int stepCount = visualizationSteps.Count;
|
||||
int batchSize = Mathf.Min(visualizationBatch, stepCount); // set higher value for faster visualization
|
||||
|
||||
for (int i = 0; i < stepCount; i += batchSize)
|
||||
{
|
||||
int end = Mathf.Min(i + batchSize, stepCount);
|
||||
|
||||
// Process a batch of steps
|
||||
for (int j = i; j < end; j++)
|
||||
{
|
||||
var step = visualizationSteps[j];
|
||||
GridNodeView gnv = Map.GetGridNodeView(step.position.x, step.position.y);
|
||||
if (gnv != null)
|
||||
{
|
||||
switch (step.type)
|
||||
{
|
||||
case PathfindingVisualizationStep.StepType.CurrentNode:
|
||||
gnv.SetInnerColor(Map.COLOR_CURRENT_NODE);
|
||||
break;
|
||||
case PathfindingVisualizationStep.StepType.OpenList:
|
||||
gnv.SetInnerColor(Map.COLOR_ADD_TO_OPENLIST);
|
||||
break;
|
||||
case PathfindingVisualizationStep.StepType.ClosedList:
|
||||
gnv.SetInnerColor(Map.COLOR_ADD_TO_CLOSEDLIST);
|
||||
break;
|
||||
case PathfindingVisualizationStep.StepType.FinalPath:
|
||||
gnv.SetInnerColor(Map.COLOR_PATH);
|
||||
// Also add the waypoint when we process the path
|
||||
if (step.type == PathfindingVisualizationStep.StepType.FinalPath)
|
||||
{
|
||||
GridNode pathNode = Map.GetGridNode(step.position.x, step.position.y);
|
||||
AddWayPoint(pathNode);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Yield after each batch to prevent frame drops
|
||||
yield return new WaitForSeconds(visualizationSpeed);
|
||||
}
|
||||
|
||||
isVisualizingPath = false;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Menghitung biaya G, H, dan F untuk jalur
|
||||
/// </summary>
|
||||
private void CalculatePathCosts(out float totalGCost, out float totalHCost, out float totalFCost)
|
||||
{
|
||||
// Inisialisasi nilai awal
|
||||
totalGCost = 0;
|
||||
totalHCost = 0;
|
||||
totalFCost = 0;
|
||||
|
||||
// Jika tidak ada path yang ditemukan, return nilai 0
|
||||
if (pathFinder.CurrentNode == null)
|
||||
return;
|
||||
|
||||
// Untuk algoritma yang menggunakan heuristik
|
||||
bool usesHeuristic = pathFinderType == PathFinderType.ASTAR ||
|
||||
pathFinderType == PathFinderType.GREEDY;
|
||||
|
||||
// Node final berisi total cost jalur
|
||||
PathFinder<Vector2Int>.PathFinderNode finalNode = pathFinder.CurrentNode;
|
||||
|
||||
// G cost adalah biaya sebenarnya dari start ke goal, sudah terakumulasi di node akhir
|
||||
totalGCost = finalNode.GCost;
|
||||
|
||||
// H cost di node final idealnya 0 (sudah di tujuan),
|
||||
// tapi untuk info lengkap, kita dapat path's H cost dari node awal
|
||||
if (usesHeuristic)
|
||||
{
|
||||
// H cost dari node awal ke tujuan (untuk referensi)
|
||||
totalHCost = finalNode.HCost;
|
||||
|
||||
// F cost adalah G + H di node akhir
|
||||
totalFCost = finalNode.FCost;
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
// Algoritma tanpa heuristik (seperti Dijkstra)
|
||||
totalFCost = totalGCost;
|
||||
}
|
||||
|
||||
//// Hitung rata-rata biaya per langkah untuk analisis
|
||||
//int pathLength = CalculatePathLength();
|
||||
//float avgCostPerStep = pathLength > 0 ? totalGCost / pathLength : 0;
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user