mirror of
https://github.com/BobbyRafael31/Unity-MazeRunner-Pathfinding-Visualizer.git
synced 2025-08-13 08:52:21 +00:00
643 lines
21 KiB
C#
643 lines
21 KiB
C#
using PathFinding;
|
|
using System;
|
|
using System.Collections;
|
|
using System.Collections.Generic;
|
|
using System.Diagnostics;
|
|
using UnityEngine;
|
|
|
|
public struct PathfindingMetrics
|
|
{
|
|
// Untuk Pengukuran Kinerja
|
|
public float timeTaken; // in milliseconds
|
|
public int pathLength;
|
|
public int nodesExplored; // number of nodes in path
|
|
public long memoryUsed; // memory used by pathfinding in bytes
|
|
|
|
// Untuk Visualisasi
|
|
public int maxOpenListSize; // maximum size of open list during pathfinding
|
|
public int maxClosedListSize; // maximum size of closed list during pathfinding
|
|
|
|
// Tambahan untuk cost metrics
|
|
public float totalGCost; // Total biaya G untuk jalur (jarak sebenarnya)
|
|
public float totalHCost; // Total biaya H untuk jalur (heuristik)
|
|
public float totalFCost; // Total biaya F untuk jalur (G + H)
|
|
|
|
}
|
|
|
|
public class NPC : MonoBehaviour
|
|
{
|
|
public float speed = 2.0f;
|
|
public Queue<Vector2> wayPoints = new Queue<Vector2>();
|
|
|
|
// Event that fires when pathfinding is complete with performance metrics
|
|
public event Action<PathfindingMetrics> OnPathfindingComplete;
|
|
|
|
public enum PathFinderType
|
|
{
|
|
ASTAR,
|
|
DIJKSTRA,
|
|
GREEDY,
|
|
BACKTRACKING,
|
|
BFS,
|
|
}
|
|
|
|
[SerializeField]
|
|
public PathFinderType pathFinderType = PathFinderType.ASTAR;
|
|
|
|
PathFinder<Vector2Int> pathFinder = null;
|
|
|
|
public GridMap Map { get; set; }
|
|
|
|
// List to store all steps for visualization playback
|
|
private List<PathfindingVisualizationStep> visualizationSteps = new List<PathfindingVisualizationStep>();
|
|
private bool isVisualizingPath = false;
|
|
|
|
// Properties to control visualization
|
|
[SerializeField]
|
|
|
|
// Visualization speed is time between visualization steps
|
|
public float visualizationSpeed = 0.0f; // Default 0; set higher for slower visualization
|
|
|
|
// Visualization batch is the number of steps to visualize at once
|
|
public int visualizationBatch = 1; // Default 1; set higher value for faster visualization
|
|
|
|
[SerializeField]
|
|
public bool showVisualization = true; // Whether to show visualization at all
|
|
|
|
// Struct to store each step of the pathfinding process for visualization
|
|
private struct PathfindingVisualizationStep
|
|
{
|
|
public enum StepType { CurrentNode, OpenList, ClosedList, FinalPath }
|
|
public StepType type;
|
|
public Vector2Int position;
|
|
|
|
public PathfindingVisualizationStep(StepType type, Vector2Int position)
|
|
{
|
|
this.type = type;
|
|
this.position = position;
|
|
}
|
|
}
|
|
|
|
private IEnumerator Coroutine_MoveOverSeconds(GameObject objectToMove, Vector3 end, float seconds)
|
|
{
|
|
float elaspedTime = 0.0f;
|
|
Vector3 startingPos = objectToMove.transform.position;
|
|
|
|
while (elaspedTime < seconds)
|
|
{
|
|
objectToMove.transform.position =
|
|
Vector3.Lerp(startingPos, end, elaspedTime / seconds);
|
|
elaspedTime += Time.deltaTime;
|
|
|
|
yield return new WaitForEndOfFrame();
|
|
}
|
|
objectToMove.transform.position = end;
|
|
}
|
|
|
|
IEnumerator Coroutine_MoveToPoint(Vector2 p, float speed)
|
|
{
|
|
Vector3 endP = new Vector3(p.x, p.y, transform.position.z);
|
|
float duration = (transform.position - endP).magnitude / speed;
|
|
|
|
yield return StartCoroutine(
|
|
Coroutine_MoveOverSeconds(
|
|
transform.gameObject, endP, duration));
|
|
}
|
|
|
|
public IEnumerator Coroutine_MoveTo()
|
|
{
|
|
while (true)
|
|
{
|
|
while (wayPoints.Count > 0)
|
|
{
|
|
yield return StartCoroutine(
|
|
Coroutine_MoveToPoint(
|
|
wayPoints.Dequeue(),
|
|
speed));
|
|
}
|
|
yield return null;
|
|
}
|
|
}
|
|
|
|
private void AddWayPoint(GridNode node)
|
|
{
|
|
wayPoints.Enqueue(new Vector2(
|
|
node.Value.x * Map.GridNodeWidth,
|
|
node.Value.y * Map.GridNodeHeight));
|
|
|
|
// We set a color to show the path.
|
|
GridNodeView gnv = Map.GetGridNodeView(node.Value.x, node.Value.y);
|
|
gnv.SetInnerColor(Map.COLOR_PATH);
|
|
}
|
|
|
|
public void SetStartNode(GridNode node)
|
|
{
|
|
wayPoints.Clear();
|
|
transform.position = new Vector3(
|
|
node.Value.x * Map.GridNodeWidth,
|
|
node.Value.y * Map.GridNodeHeight,
|
|
transform.position.z);
|
|
}
|
|
|
|
private void Start()
|
|
{
|
|
// Initialize pathfinder based on type
|
|
InitializePathFinder();
|
|
|
|
// Start the movement coroutine
|
|
StartCoroutine(Coroutine_MoveTo());
|
|
}
|
|
|
|
private void InitializePathFinder()
|
|
{
|
|
// Hitung perkiraan jumlah node dalam grid
|
|
int estimatedNodeCount = 0;
|
|
if (Map != null)
|
|
{
|
|
estimatedNodeCount = Map.NumX * Map.NumY;
|
|
}
|
|
|
|
// Log informasi ukuran grid dan strategi optimisasi
|
|
bool isLargeGrid = estimatedNodeCount > 2500;
|
|
|
|
// Create new pathfinder instance
|
|
switch (pathFinderType)
|
|
{
|
|
case PathFinderType.ASTAR:
|
|
pathFinder = new AStarPathFinder<Vector2Int>(estimatedNodeCount);
|
|
break;
|
|
case PathFinderType.DIJKSTRA:
|
|
pathFinder = new DijkstraPathFinder<Vector2Int>(estimatedNodeCount);
|
|
break;
|
|
case PathFinderType.GREEDY:
|
|
pathFinder = new GreedyPathFinder<Vector2Int>();
|
|
break;
|
|
case PathFinderType.BACKTRACKING:
|
|
pathFinder = new BacktrackingPathFinder<Vector2Int>();
|
|
break;
|
|
case PathFinderType.BFS:
|
|
pathFinder = new BFSPathFinder<Vector2Int>();
|
|
break;
|
|
}
|
|
|
|
// Set up callbacks
|
|
pathFinder.onSuccess = OnSuccessPathFinding;
|
|
pathFinder.onFailure = OnFailurePathFinding;
|
|
|
|
// Gunakan setting asli
|
|
pathFinder.HeuristicCost = GridMap.GetManhattanCost;
|
|
pathFinder.NodeTraversalCost = GridMap.GetEuclideanCost;
|
|
}
|
|
|
|
public void MoveTo(GridNode destination, bool silentMode = false)
|
|
{
|
|
// inialisaasi pathfinder jika belum ada
|
|
if (pathFinder == null)
|
|
{
|
|
InitializePathFinder();
|
|
}
|
|
|
|
|
|
if (pathFinder.Status == PathFinderStatus.RUNNING)
|
|
{
|
|
return;
|
|
}
|
|
|
|
GridNode start = Map.GetGridNode(
|
|
(int)(transform.position.x / Map.GridNodeWidth),
|
|
(int)(transform.position.y / Map.GridNodeHeight));
|
|
|
|
if (start == null || destination == null)
|
|
{
|
|
return;
|
|
}
|
|
|
|
SetStartNode(start);
|
|
|
|
// Reset grid colors
|
|
if (!silentMode)
|
|
{
|
|
Map.ResetGridNodeColours();
|
|
}
|
|
|
|
visualizationSteps.Clear();
|
|
isVisualizingPath = false;
|
|
|
|
// jika gagal menginisialisasi pathfinder, tidak perlu melanjutkan
|
|
if (!pathFinder.Initialise(start, destination))
|
|
{
|
|
return;
|
|
}
|
|
|
|
StartCoroutine(Coroutine_FindPathStep(silentMode));
|
|
}
|
|
|
|
IEnumerator Coroutine_FindPathStep(bool silentMode = false)
|
|
{
|
|
yield return StartCoroutine(MeasurePerformance(silentMode));
|
|
|
|
// Start visualization after calculation is complete
|
|
if (pathFinder.Status == PathFinderStatus.SUCCESS && showVisualization && !silentMode)
|
|
{
|
|
yield return StartCoroutine(VisualizePathfinding());
|
|
}
|
|
}
|
|
|
|
IEnumerator MeasurePerformance(bool silentMode = false)
|
|
{
|
|
// Memory tracking for pathfinding structures - tetap untuk visualisasi
|
|
int maxOpenListSize = 0;
|
|
int currentOpenListSize = 0;
|
|
int maxClosedListSize = 0;
|
|
int currentClosedListSize = 0;
|
|
|
|
// Pre-allocate visualizationSteps with estimated capacity to avoid reallocations
|
|
visualizationSteps = new List<PathfindingVisualizationStep>(4);
|
|
|
|
// ===== MEMORY MEASUREMENT START: Ukur memory sebelum algoritma =====
|
|
long memoryBefore = System.GC.GetTotalMemory(false);
|
|
|
|
// Setup callbacks before running algorithm
|
|
SetupCallbacks(silentMode, ref maxOpenListSize, ref currentOpenListSize,
|
|
ref maxClosedListSize, ref currentClosedListSize);
|
|
|
|
// ===== STOPWATCH START: Pengukuran waktu algoritma =====
|
|
Stopwatch algorithmTimer = Stopwatch.StartNew();
|
|
|
|
// Counter untuk jumlah step yang dilakukan algoritma
|
|
int stepCount = 0;
|
|
|
|
// Execute the pathfinding algorithm synchronously in a single frame without visualization
|
|
while (pathFinder.Status == PathFinderStatus.RUNNING)
|
|
{
|
|
stepCount++;
|
|
pathFinder.Step();
|
|
}
|
|
|
|
// ===== STOPWATCH STOP: Akhir pengukuran waktu algoritma =====
|
|
algorithmTimer.Stop();
|
|
|
|
// ===== MEMORY MEASUREMENT END: Ukur memory setelah algoritma =====
|
|
long memoryAfter = System.GC.GetTotalMemory(false);
|
|
long memoryUsed = memoryAfter - memoryBefore;
|
|
|
|
float milliseconds = (algorithmTimer.ElapsedTicks * 1000.0f) / Stopwatch.Frequency;
|
|
|
|
// Calculate path length once and reuse
|
|
int pathLength = 0;
|
|
int nodesExplored = 0;
|
|
float totalGCost = 0;
|
|
float totalHCost = 0;
|
|
float totalFCost = 0;
|
|
|
|
// Add memory for path reconstruction (final path)
|
|
if (pathFinder.Status == PathFinderStatus.SUCCESS)
|
|
{
|
|
pathLength = CalculatePathLength();
|
|
nodesExplored = pathFinder.ClosedListCount;
|
|
|
|
// Hitung total G, H, dan F cost
|
|
CalculatePathCosts(out totalGCost, out totalHCost, out totalFCost);
|
|
}
|
|
|
|
// Create and send metrics - waktu pengukuran algoritma yang tepat
|
|
PathfindingMetrics metrics = new PathfindingMetrics
|
|
{
|
|
timeTaken = milliseconds, // Waktu algoritma yang diukur dengan stopwatch
|
|
pathLength = pathLength,
|
|
nodesExplored = nodesExplored,
|
|
memoryUsed = memoryUsed,
|
|
maxOpenListSize = maxOpenListSize,
|
|
maxClosedListSize = maxClosedListSize,
|
|
totalGCost = totalGCost,
|
|
totalHCost = totalHCost,
|
|
totalFCost = totalFCost,
|
|
};
|
|
|
|
// Report metrics before visualization
|
|
if (!silentMode)
|
|
{
|
|
OnPathfindingComplete?.Invoke(metrics);
|
|
}
|
|
|
|
// Path visualization and handling
|
|
HandlePathFindingResult(silentMode, pathLength);
|
|
|
|
// Pastikan untuk mengembalikan nilai di akhir coroutine
|
|
yield return null;
|
|
}
|
|
|
|
|
|
/// <summary>
|
|
/// Setup callbacks for tracking nodes in open/closed lists and visualization
|
|
/// </summary>
|
|
private void SetupCallbacks(bool silentMode, ref int maxOpenListSize, ref int currentOpenListSize,
|
|
ref int maxClosedListSize, ref int currentClosedListSize)
|
|
{
|
|
// Buat variabel lokal untuk menghindari masalah dengan ref parameter dalam lambda
|
|
int localCurrentOpenListSize = currentOpenListSize;
|
|
int localMaxOpenListSize = maxOpenListSize;
|
|
int localCurrentClosedListSize = currentClosedListSize;
|
|
int localMaxClosedListSize = maxClosedListSize;
|
|
|
|
if (silentMode)
|
|
{
|
|
// In silent mode, just set minimal callbacks for metrics
|
|
pathFinder.onAddToOpenList = (node) =>
|
|
{
|
|
localCurrentOpenListSize++;
|
|
if (localCurrentOpenListSize > localMaxOpenListSize)
|
|
localMaxOpenListSize = localCurrentOpenListSize;
|
|
};
|
|
|
|
pathFinder.onAddToClosedList = (node) =>
|
|
{
|
|
localCurrentClosedListSize++;
|
|
if (localCurrentClosedListSize > localMaxClosedListSize)
|
|
localMaxClosedListSize = localCurrentClosedListSize;
|
|
localCurrentOpenListSize--; // When a node is moved from open to closed list
|
|
};
|
|
}
|
|
else
|
|
{
|
|
// In regular mode, track and prepare for visualization
|
|
pathFinder.onAddToOpenList = (node) =>
|
|
{
|
|
visualizationSteps.Add(new PathfindingVisualizationStep(
|
|
PathfindingVisualizationStep.StepType.OpenList,
|
|
node.Location.Value));
|
|
|
|
localCurrentOpenListSize++;
|
|
if (localCurrentOpenListSize > localMaxOpenListSize)
|
|
localMaxOpenListSize = localCurrentOpenListSize;
|
|
};
|
|
|
|
pathFinder.onAddToClosedList = (node) =>
|
|
{
|
|
visualizationSteps.Add(new PathfindingVisualizationStep(
|
|
PathfindingVisualizationStep.StepType.ClosedList,
|
|
node.Location.Value));
|
|
|
|
localCurrentClosedListSize++;
|
|
if (localCurrentClosedListSize > localMaxClosedListSize)
|
|
localMaxClosedListSize = localCurrentClosedListSize;
|
|
|
|
localCurrentOpenListSize--; // When a node is moved from open to closed list
|
|
};
|
|
|
|
pathFinder.onChangeCurrentNode = (node) =>
|
|
{
|
|
visualizationSteps.Add(new PathfindingVisualizationStep(
|
|
PathfindingVisualizationStep.StepType.CurrentNode,
|
|
node.Location.Value));
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
// Setelah lambda selesai dijalankan, perbarui variabel ref
|
|
maxOpenListSize = localMaxOpenListSize;
|
|
currentOpenListSize = localCurrentOpenListSize;
|
|
maxClosedListSize = localMaxClosedListSize;
|
|
currentClosedListSize = localCurrentClosedListSize;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Handle path finding result (success or failure)
|
|
/// </summary>
|
|
private void HandlePathFindingResult(bool silentMode, int pathLength)
|
|
{
|
|
|
|
if (pathFinder.Status == PathFinderStatus.SUCCESS)
|
|
{
|
|
OnSuccessPathFinding();
|
|
|
|
// In non-silent mode, prepare visualization data for the path
|
|
if (!silentMode && showVisualization)
|
|
{
|
|
// Add the path nodes for visualization in efficient batched way
|
|
PathFinder<Vector2Int>.PathFinderNode node = pathFinder.CurrentNode;
|
|
List<Vector2Int> pathPositions = new List<Vector2Int>(pathLength); // Pre-allocate with known size
|
|
|
|
// Build path in reverse order
|
|
while (node != null)
|
|
{
|
|
pathPositions.Add(node.Location.Value);
|
|
node = node.Parent;
|
|
}
|
|
|
|
// Process path in correct order
|
|
for (int i = pathPositions.Count - 1; i >= 0; i--)
|
|
{
|
|
visualizationSteps.Add(new PathfindingVisualizationStep(
|
|
PathfindingVisualizationStep.StepType.FinalPath,
|
|
pathPositions[i]));
|
|
}
|
|
}
|
|
}
|
|
else if (pathFinder.Status == PathFinderStatus.FAILURE)
|
|
{
|
|
OnFailurePathFinding();
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Memformat ukuran byte menjadi string yang lebih mudah dibaca
|
|
/// </summary>
|
|
private string FormatBytes(long bytes)
|
|
{
|
|
string[] sizes = { "B", "KB", "MB", "GB" };
|
|
int order = 0;
|
|
double size = bytes;
|
|
while (size >= 1024 && order < sizes.Length - 1)
|
|
{
|
|
order++;
|
|
size = size / 1024;
|
|
}
|
|
return $"{size:0.##} {sizes[order]}";
|
|
}
|
|
|
|
void OnSuccessPathFinding()
|
|
{
|
|
float totalGCost = 0;
|
|
float totalHCost = 0;
|
|
float totalFCost = 0;
|
|
|
|
// Hitung biaya-biaya path menggunakan metode yang sudah ada
|
|
CalculatePathCosts(out totalGCost, out totalHCost, out totalFCost);
|
|
|
|
// Informasi dasar
|
|
int pathLength = CalculatePathLength();
|
|
|
|
}
|
|
|
|
void OnFailurePathFinding()
|
|
{
|
|
UnityEngine.Debug.Log("Pathfinding failed");
|
|
}
|
|
|
|
/// <summary>
|
|
/// Changes the pathfinding algorithm at runtime
|
|
/// </summary>
|
|
public void ChangeAlgorithm(PathFinderType newType)
|
|
{
|
|
// Don't change if pathfinding is in progress
|
|
if (pathFinder != null && pathFinder.Status == PathFinderStatus.RUNNING)
|
|
{
|
|
UnityEngine.Debug.Log("Cannot change algorithm while pathfinding is running");
|
|
return;
|
|
}
|
|
|
|
pathFinderType = newType;
|
|
|
|
// Hitung perkiraan jumlah node dalam grid
|
|
int estimatedNodeCount = 0;
|
|
if (Map != null)
|
|
{
|
|
estimatedNodeCount = Map.NumX * Map.NumY;
|
|
}
|
|
|
|
// Create new pathfinder instance
|
|
switch (pathFinderType)
|
|
{
|
|
case PathFinderType.ASTAR:
|
|
pathFinder = new AStarPathFinder<Vector2Int>(estimatedNodeCount);
|
|
break;
|
|
case PathFinderType.DIJKSTRA:
|
|
pathFinder = new DijkstraPathFinder<Vector2Int>(estimatedNodeCount);
|
|
break;
|
|
case PathFinderType.GREEDY:
|
|
pathFinder = new GreedyPathFinder<Vector2Int>();
|
|
break;
|
|
case PathFinderType.BACKTRACKING:
|
|
pathFinder = new BacktrackingPathFinder<Vector2Int>();
|
|
break;
|
|
case PathFinderType.BFS:
|
|
pathFinder = new BFSPathFinder<Vector2Int>();
|
|
break;
|
|
}
|
|
|
|
// Set up callbacks
|
|
pathFinder.onSuccess = OnSuccessPathFinding;
|
|
pathFinder.onFailure = OnFailurePathFinding;
|
|
|
|
// Gunakan setting asli
|
|
pathFinder.HeuristicCost = GridMap.GetManhattanCost;
|
|
pathFinder.NodeTraversalCost = GridMap.GetEuclideanCost;
|
|
}
|
|
|
|
private int CalculatePathLength()
|
|
{
|
|
int pathLength = 0;
|
|
PathFinder<Vector2Int>.PathFinderNode node = pathFinder.CurrentNode;
|
|
while (node != null)
|
|
{
|
|
pathLength++;
|
|
node = node.Parent;
|
|
}
|
|
return pathLength;
|
|
}
|
|
|
|
IEnumerator VisualizePathfinding()
|
|
{
|
|
if (!showVisualization)
|
|
yield break;
|
|
|
|
isVisualizingPath = true;
|
|
|
|
// First, ensure grid is reset
|
|
Map.ResetGridNodeColours();
|
|
|
|
// Visualize each step with a delay - use batch processing for efficiency
|
|
int stepCount = visualizationSteps.Count;
|
|
int batchSize = Mathf.Min(visualizationBatch, stepCount); // set higher value for faster visualization
|
|
|
|
for (int i = 0; i < stepCount; i += batchSize)
|
|
{
|
|
int end = Mathf.Min(i + batchSize, stepCount);
|
|
|
|
// Process a batch of steps
|
|
for (int j = i; j < end; j++)
|
|
{
|
|
var step = visualizationSteps[j];
|
|
GridNodeView gnv = Map.GetGridNodeView(step.position.x, step.position.y);
|
|
if (gnv != null)
|
|
{
|
|
switch (step.type)
|
|
{
|
|
case PathfindingVisualizationStep.StepType.CurrentNode:
|
|
gnv.SetInnerColor(Map.COLOR_CURRENT_NODE);
|
|
break;
|
|
case PathfindingVisualizationStep.StepType.OpenList:
|
|
gnv.SetInnerColor(Map.COLOR_ADD_TO_OPENLIST);
|
|
break;
|
|
case PathfindingVisualizationStep.StepType.ClosedList:
|
|
gnv.SetInnerColor(Map.COLOR_ADD_TO_CLOSEDLIST);
|
|
break;
|
|
case PathfindingVisualizationStep.StepType.FinalPath:
|
|
gnv.SetInnerColor(Map.COLOR_PATH);
|
|
// Also add the waypoint when we process the path
|
|
if (step.type == PathfindingVisualizationStep.StepType.FinalPath)
|
|
{
|
|
GridNode pathNode = Map.GetGridNode(step.position.x, step.position.y);
|
|
AddWayPoint(pathNode);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Yield after each batch to prevent frame drops
|
|
yield return new WaitForSeconds(visualizationSpeed);
|
|
}
|
|
|
|
isVisualizingPath = false;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Menghitung biaya G, H, dan F untuk jalur
|
|
/// </summary>
|
|
private void CalculatePathCosts(out float totalGCost, out float totalHCost, out float totalFCost)
|
|
{
|
|
// Inisialisasi nilai awal
|
|
totalGCost = 0;
|
|
totalHCost = 0;
|
|
totalFCost = 0;
|
|
|
|
// Jika tidak ada path yang ditemukan, return nilai 0
|
|
if (pathFinder.CurrentNode == null)
|
|
return;
|
|
|
|
// Untuk algoritma yang menggunakan heuristik
|
|
bool usesHeuristic = pathFinderType == PathFinderType.ASTAR ||
|
|
pathFinderType == PathFinderType.GREEDY;
|
|
|
|
// Node final berisi total cost jalur
|
|
PathFinder<Vector2Int>.PathFinderNode finalNode = pathFinder.CurrentNode;
|
|
|
|
// G cost adalah biaya sebenarnya dari start ke goal, sudah terakumulasi di node akhir
|
|
totalGCost = finalNode.GCost;
|
|
|
|
// H cost di node final idealnya 0 (sudah di tujuan),
|
|
// tapi untuk info lengkap, kita dapat path's H cost dari node awal
|
|
if (usesHeuristic)
|
|
{
|
|
// H cost dari node awal ke tujuan (untuk referensi)
|
|
totalHCost = finalNode.HCost;
|
|
|
|
// F cost adalah G + H di node akhir
|
|
totalFCost = finalNode.FCost;
|
|
|
|
}
|
|
else
|
|
{
|
|
// Algoritma tanpa heuristik (seperti Dijkstra)
|
|
totalFCost = totalGCost;
|
|
}
|
|
|
|
//// Hitung rata-rata biaya per langkah untuk analisis
|
|
//int pathLength = CalculatePathLength();
|
|
//float avgCostPerStep = pathLength > 0 ? totalGCost / pathLength : 0;
|
|
}
|
|
} |