From a8e5cd47b1254aa805e9fd19580de6e7253e9090 Mon Sep 17 00:00:00 2001 From: Muhammad Teguh Prananto <2110511036@mahasiswa.upnvj.ac.id> Date: Thu, 10 Jul 2025 15:12:29 +0000 Subject: [PATCH] Update README.md --- README.md | 40 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) diff --git a/README.md b/README.md index e69de29..c34a964 100644 --- a/README.md +++ b/README.md @@ -0,0 +1,40 @@ +# โ˜• Coffee Brewing Level Prediction Based on Spectroscopy Data Using Deep Learning + +This repository contains the complete pipeline for a thesis project that predicts **coffee brewing levels** using **spectroscopy data** and **deep learning models**, later deployed on a **Raspberry Pi** with a real-time interface using **OLED display** and a **physical button**. + +--- + +## ๐Ÿ“š Description + +The goal of this project is to classify brewed coffee into categories such as **Underdeveloped**, **Ideal**, or **Bitter**, based on spectral data obtained using the **AS7265x spectroscopy sensor**. A deep learning model is trained using Python and TensorFlow, then converted into **TensorFlow Lite** and deployed on a physical prototype for real-time prediction. + +--- + +## ๐Ÿงช Data Collection + +- **Sensor**: [AS7265x Triad Spectral Sensor](https://www.adafruit.com/product/3779) +- **Platform**: Raspberry Pi +- **Categories**: Coffee brewing levels +- **Format**: Raw 18-channel spectral data saved in `.csv` format + +--- + +## ๐Ÿง  Modeling + +### Main Libraries for Modeling: +- `pandas`: data manipulation and preprocessing +- `seaborn`: data visualization and EDA +- `tensorflow`: deep learning model training and conversion to `.tflite` +- `numpy`: numerical operations + +--- + +## ๐Ÿ“Ÿ Prototype Deployment + +A physical prototype is built using: + +- **Raspberry Pi** +- **AS7265x Spectroscopy Sensor** +- **SSD1306 OLED Display** +- **Push Button** +- **TensorFlow Lite Interpreter** \ No newline at end of file