from tflite_runtime.interpreter import Interpreter import numpy as np # Load the TFLite model interpreter = Interpreter(model_path="Iris.tflite") interpreter.allocate_tensors() # Get input and output details input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Print details print("Input details:", input_details) print("Output details:", output_details) # Dummy input data input_shape = input_details[0]['shape'] # e.g., [1, 224, 224, 3] input_data = np.array([[5.1, 3.5, 1.4, 0.2]]).astype(input_details[0]['dtype']) # Set input tensor interpreter.set_tensor(input_details[0]['index'], input_data) # Run inference interpreter.invoke() # Get output tensor output_data = interpreter.get_tensor(output_details[0]['index']) print("Predictions:", output_data) classes = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'] final = np.argmax(output_data) output_class = classes[final] print(output_class)