Files
2025-07-10 21:59:56 +07:00

33 lines
956 B
Python

from tflite_runtime.interpreter import Interpreter
import numpy as np
# Load the TFLite model
interpreter = Interpreter(model_path="Iris.tflite")
interpreter.allocate_tensors()
# Get input and output details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Print details
print("Input details:", input_details)
print("Output details:", output_details)
# Dummy input data
input_shape = input_details[0]['shape'] # e.g., [1, 224, 224, 3]
input_data = np.array([[5.1, 3.5, 1.4, 0.2]]).astype(input_details[0]['dtype'])
# Set input tensor
interpreter.set_tensor(input_details[0]['index'], input_data)
# Run inference
interpreter.invoke()
# Get output tensor
output_data = interpreter.get_tensor(output_details[0]['index'])
print("Predictions:", output_data)
classes = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
final = np.argmax(output_data)
output_class = classes[final]
print(output_class)