Files
Skripsi/Graph.ipynb
2025-07-11 09:54:00 +00:00

2599 lines
364 KiB
Plaintext

{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "8URuJbbuo2AR"
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"source": [
"# ADRO"
],
"metadata": {
"id": "fn-G0koQqR7G"
}
},
{
"cell_type": "code",
"source": [
"lstm_adro = \"https://raw.githubusercontent.com/MIlhamEr/Skripsi/refs/heads/main/LSTM_adro_predictions.csv\"\n",
"lstm_adro = pd.read_csv(lstm_adro)\n",
"lstm_adro.tail()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "y_a5DZnfpJkI",
"outputId": "102d13a7-db8a-46cc-9c94-de1731570850"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Actual ADRO Predicted ADRO\n",
"224 3740.0 3704.371686\n",
"225 3760.0 3725.714683\n",
"226 3760.0 3753.182715\n",
"227 3780.0 3747.377368\n",
"228 3940.0 3775.836353"
],
"text/html": [
"\n",
" <div id=\"df-af95bb82-c69a-4fd9-9093-a9420315ab03\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Actual ADRO</th>\n",
" <th>Predicted ADRO</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>224</th>\n",
" <td>3740.0</td>\n",
" <td>3704.371686</td>\n",
" </tr>\n",
" <tr>\n",
" <th>225</th>\n",
" <td>3760.0</td>\n",
" <td>3725.714683</td>\n",
" </tr>\n",
" <tr>\n",
" <th>226</th>\n",
" <td>3760.0</td>\n",
" <td>3753.182715</td>\n",
" </tr>\n",
" <tr>\n",
" <th>227</th>\n",
" <td>3780.0</td>\n",
" <td>3747.377368</td>\n",
" </tr>\n",
" <tr>\n",
" <th>228</th>\n",
" <td>3940.0</td>\n",
" <td>3775.836353</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-af95bb82-c69a-4fd9-9093-a9420315ab03')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-af95bb82-c69a-4fd9-9093-a9420315ab03 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-af95bb82-c69a-4fd9-9093-a9420315ab03');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
" <div id=\"df-539e7869-c94f-4268-a35f-a552975497b5\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-539e7869-c94f-4268-a35f-a552975497b5')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-539e7869-c94f-4268-a35f-a552975497b5 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"lstm_adro\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Actual ADRO\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.7312669668102,\n \"min\": 3740.0,\n \"max\": 3940.0,\n \"num_unique_values\": 4,\n \"samples\": [\n 3760.0,\n 3940.0,\n 3740.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Predicted ADRO\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 27.283215707097145,\n \"min\": 3704.371685743332,\n \"max\": 3775.836352944374,\n \"num_unique_values\": 5,\n \"samples\": [\n 3725.714682996273,\n 3775.836352944374,\n 3753.182715296745\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 2
}
]
},
{
"cell_type": "code",
"source": [
"gru_adro = \"https://raw.githubusercontent.com/MIlhamEr/Skripsi/refs/heads/main/GRU_adro_predictions.csv\"\n",
"gru_adro = pd.read_csv(gru_adro)\n",
"gru_adro.tail()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "hVbYMUlXpq-X",
"outputId": "a2330ac6-2dd6-4d6d-c7e7-d144d5508c58"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Actual ADRO Predicted ADRO\n",
"224 3740.0 3844.406319\n",
"225 3760.0 3855.139246\n",
"226 3760.0 3886.059799\n",
"227 3780.0 3852.010856\n",
"228 3940.0 3923.744762"
],
"text/html": [
"\n",
" <div id=\"df-766eabb3-7662-435d-bed3-ddbaceb72b88\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Actual ADRO</th>\n",
" <th>Predicted ADRO</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>224</th>\n",
" <td>3740.0</td>\n",
" <td>3844.406319</td>\n",
" </tr>\n",
" <tr>\n",
" <th>225</th>\n",
" <td>3760.0</td>\n",
" <td>3855.139246</td>\n",
" </tr>\n",
" <tr>\n",
" <th>226</th>\n",
" <td>3760.0</td>\n",
" <td>3886.059799</td>\n",
" </tr>\n",
" <tr>\n",
" <th>227</th>\n",
" <td>3780.0</td>\n",
" <td>3852.010856</td>\n",
" </tr>\n",
" <tr>\n",
" <th>228</th>\n",
" <td>3940.0</td>\n",
" <td>3923.744762</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-766eabb3-7662-435d-bed3-ddbaceb72b88')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-766eabb3-7662-435d-bed3-ddbaceb72b88 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-766eabb3-7662-435d-bed3-ddbaceb72b88');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
" <div id=\"df-23c4adca-ab77-4719-ae3b-13b133f0edc6\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-23c4adca-ab77-4719-ae3b-13b133f0edc6')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-23c4adca-ab77-4719-ae3b-13b133f0edc6 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"gru_adro\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Actual ADRO\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.7312669668102,\n \"min\": 3740.0,\n \"max\": 3940.0,\n \"num_unique_values\": 4,\n \"samples\": [\n 3760.0,\n 3940.0,\n 3740.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Predicted ADRO\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 32.86369565366565,\n \"min\": 3844.406318962574,\n \"max\": 3923.744761586189,\n \"num_unique_values\": 5,\n \"samples\": [\n 3855.1392456889153,\n 3923.744761586189,\n 3886.0597985982895\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 3
}
]
},
{
"cell_type": "code",
"source": [
"gru_adro = gru_adro.drop(columns=[\"Actual ADRO\"])\n",
"gru_adro.rename(columns={'Predicted ADRO': 'Predicted ADRO GRU'}, inplace=True)"
],
"metadata": {
"id": "aw83tVf7ELRJ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"merged_adro = pd.concat([lstm_adro, gru_adro], axis=1)\n",
"merged_adro.tail()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "nZmHCxC_p1wc",
"outputId": "fb43a8aa-8878-4b53-b126-3a09a7f03b97"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Actual ADRO Predicted ADRO Predicted ADRO GRU\n",
"224 3740.0 3704.371686 3844.406319\n",
"225 3760.0 3725.714683 3855.139246\n",
"226 3760.0 3753.182715 3886.059799\n",
"227 3780.0 3747.377368 3852.010856\n",
"228 3940.0 3775.836353 3923.744762"
],
"text/html": [
"\n",
" <div id=\"df-051c5a9a-dde2-4c60-a20e-f4e58bef99d8\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Actual ADRO</th>\n",
" <th>Predicted ADRO</th>\n",
" <th>Predicted ADRO GRU</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>224</th>\n",
" <td>3740.0</td>\n",
" <td>3704.371686</td>\n",
" <td>3844.406319</td>\n",
" </tr>\n",
" <tr>\n",
" <th>225</th>\n",
" <td>3760.0</td>\n",
" <td>3725.714683</td>\n",
" <td>3855.139246</td>\n",
" </tr>\n",
" <tr>\n",
" <th>226</th>\n",
" <td>3760.0</td>\n",
" <td>3753.182715</td>\n",
" <td>3886.059799</td>\n",
" </tr>\n",
" <tr>\n",
" <th>227</th>\n",
" <td>3780.0</td>\n",
" <td>3747.377368</td>\n",
" <td>3852.010856</td>\n",
" </tr>\n",
" <tr>\n",
" <th>228</th>\n",
" <td>3940.0</td>\n",
" <td>3775.836353</td>\n",
" <td>3923.744762</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-051c5a9a-dde2-4c60-a20e-f4e58bef99d8')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-051c5a9a-dde2-4c60-a20e-f4e58bef99d8 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-051c5a9a-dde2-4c60-a20e-f4e58bef99d8');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
" <div id=\"df-9033fca9-81ee-438e-94a4-dc31863f9ff8\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-9033fca9-81ee-438e-94a4-dc31863f9ff8')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-9033fca9-81ee-438e-94a4-dc31863f9ff8 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"merged_adro\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Actual ADRO\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.7312669668102,\n \"min\": 3740.0,\n \"max\": 3940.0,\n \"num_unique_values\": 4,\n \"samples\": [\n 3760.0,\n 3940.0,\n 3740.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Predicted ADRO\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 27.283215707097145,\n \"min\": 3704.371685743332,\n \"max\": 3775.836352944374,\n \"num_unique_values\": 5,\n \"samples\": [\n 3725.714682996273,\n 3775.836352944374,\n 3753.182715296745\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Predicted ADRO GRU\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 32.86369565366565,\n \"min\": 3844.406318962574,\n \"max\": 3923.744761586189,\n \"num_unique_values\": 5,\n \"samples\": [\n 3855.1392456889153,\n 3923.744761586189,\n 3886.0597985982895\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 5
}
]
},
{
"cell_type": "markdown",
"source": [
"# DSSA"
],
"metadata": {
"id": "OFxcS-3hqUaj"
}
},
{
"cell_type": "code",
"source": [
"lstm_dssa = \"https://raw.githubusercontent.com/MIlhamEr/Skripsi/refs/heads/main/LSTM_dssa_predictions.csv\"\n",
"lstm_dssa = pd.read_csv(lstm_dssa)\n",
"lstm_dssa.tail()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "H0JC6IFipO3e",
"outputId": "3f124942-2723-4a84-dd6d-4a40aaedafe7"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Actual DSSA Predicted DSSA\n",
"224 41575.0 38529.780222\n",
"225 42150.0 39018.766194\n",
"226 41250.0 39050.567652\n",
"227 42000.0 38706.559837\n",
"228 42000.0 39096.267545"
],
"text/html": [
"\n",
" <div id=\"df-dd3efcb4-9022-4127-99b5-aea2ccd5e781\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Actual DSSA</th>\n",
" <th>Predicted DSSA</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>224</th>\n",
" <td>41575.0</td>\n",
" <td>38529.780222</td>\n",
" </tr>\n",
" <tr>\n",
" <th>225</th>\n",
" <td>42150.0</td>\n",
" <td>39018.766194</td>\n",
" </tr>\n",
" <tr>\n",
" <th>226</th>\n",
" <td>41250.0</td>\n",
" <td>39050.567652</td>\n",
" </tr>\n",
" <tr>\n",
" <th>227</th>\n",
" <td>42000.0</td>\n",
" <td>38706.559837</td>\n",
" </tr>\n",
" <tr>\n",
" <th>228</th>\n",
" <td>42000.0</td>\n",
" <td>39096.267545</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-dd3efcb4-9022-4127-99b5-aea2ccd5e781')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-dd3efcb4-9022-4127-99b5-aea2ccd5e781 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-dd3efcb4-9022-4127-99b5-aea2ccd5e781');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
" <div id=\"df-6d902d37-eddd-4493-838d-d9418143ff4d\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-6d902d37-eddd-4493-838d-d9418143ff4d')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-6d902d37-eddd-4493-838d-d9418143ff4d button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"lstm_dssa\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Actual DSSA\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 372.6593618842817,\n \"min\": 41250.0,\n \"max\": 42150.0,\n \"num_unique_values\": 4,\n \"samples\": [\n 42150.0,\n 42000.0,\n 41575.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Predicted DSSA\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 248.9255214799381,\n \"min\": 38529.78022158146,\n \"max\": 39096.26754462719,\n \"num_unique_values\": 5,\n \"samples\": [\n 39018.76619428396,\n 39096.26754462719,\n 39050.5676522851\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 6
}
]
},
{
"cell_type": "code",
"source": [
"gru_dssa = \"https://raw.githubusercontent.com/MIlhamEr/Skripsi/refs/heads/main/GRU_dssa_predictions.csv\"\n",
"gru_dssa = pd.read_csv(gru_dssa)\n",
"gru_dssa.tail()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "LGL6JSpApo2k",
"outputId": "7a440319-1c1a-418f-bbaa-bdc80160092a"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Actual DSSA Predicted DSSA\n",
"224 41575.0 40659.793050\n",
"225 42150.0 40667.242841\n",
"226 41250.0 40418.856358\n",
"227 42000.0 40047.592764\n",
"228 42000.0 40918.596169"
],
"text/html": [
"\n",
" <div id=\"df-43d99891-d985-4e15-98ca-b68cdfc71724\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Actual DSSA</th>\n",
" <th>Predicted DSSA</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>224</th>\n",
" <td>41575.0</td>\n",
" <td>40659.793050</td>\n",
" </tr>\n",
" <tr>\n",
" <th>225</th>\n",
" <td>42150.0</td>\n",
" <td>40667.242841</td>\n",
" </tr>\n",
" <tr>\n",
" <th>226</th>\n",
" <td>41250.0</td>\n",
" <td>40418.856358</td>\n",
" </tr>\n",
" <tr>\n",
" <th>227</th>\n",
" <td>42000.0</td>\n",
" <td>40047.592764</td>\n",
" </tr>\n",
" <tr>\n",
" <th>228</th>\n",
" <td>42000.0</td>\n",
" <td>40918.596169</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-43d99891-d985-4e15-98ca-b68cdfc71724')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-43d99891-d985-4e15-98ca-b68cdfc71724 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-43d99891-d985-4e15-98ca-b68cdfc71724');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
" <div id=\"df-d51e9da7-e785-4990-8545-4b9d1e4da10c\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-d51e9da7-e785-4990-8545-4b9d1e4da10c')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-d51e9da7-e785-4990-8545-4b9d1e4da10c button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"gru_dssa\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Actual DSSA\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 372.6593618842817,\n \"min\": 41250.0,\n \"max\": 42150.0,\n \"num_unique_values\": 4,\n \"samples\": [\n 42150.0,\n 42000.0,\n 41575.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Predicted DSSA\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 328.24824873598226,\n \"min\": 40047.5927644968,\n \"max\": 40918.59616935253,\n \"num_unique_values\": 5,\n \"samples\": [\n 40667.24284052849,\n 40918.59616935253,\n 40418.856358230114\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 7
}
]
},
{
"cell_type": "code",
"source": [
"gru_dssa = gru_dssa.drop(columns=[\"Actual DSSA\"])\n",
"gru_dssa.rename(columns={'Predicted DSSA': 'Predicted DSSA GRU'}, inplace=True)"
],
"metadata": {
"id": "0N4znkULuWqH"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"merged_dssa = pd.concat([lstm_dssa, gru_dssa], axis=1)\n",
"merged_dssa.tail()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "pbfR3PdMqXYr",
"outputId": "942c9e92-6144-403b-8264-45a65179f734"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Actual DSSA Predicted DSSA Predicted DSSA GRU\n",
"224 41575.0 38529.780222 40659.793050\n",
"225 42150.0 39018.766194 40667.242841\n",
"226 41250.0 39050.567652 40418.856358\n",
"227 42000.0 38706.559837 40047.592764\n",
"228 42000.0 39096.267545 40918.596169"
],
"text/html": [
"\n",
" <div id=\"df-335fb64f-2c17-49a7-87a4-579b33dadb12\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Actual DSSA</th>\n",
" <th>Predicted DSSA</th>\n",
" <th>Predicted DSSA GRU</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>224</th>\n",
" <td>41575.0</td>\n",
" <td>38529.780222</td>\n",
" <td>40659.793050</td>\n",
" </tr>\n",
" <tr>\n",
" <th>225</th>\n",
" <td>42150.0</td>\n",
" <td>39018.766194</td>\n",
" <td>40667.242841</td>\n",
" </tr>\n",
" <tr>\n",
" <th>226</th>\n",
" <td>41250.0</td>\n",
" <td>39050.567652</td>\n",
" <td>40418.856358</td>\n",
" </tr>\n",
" <tr>\n",
" <th>227</th>\n",
" <td>42000.0</td>\n",
" <td>38706.559837</td>\n",
" <td>40047.592764</td>\n",
" </tr>\n",
" <tr>\n",
" <th>228</th>\n",
" <td>42000.0</td>\n",
" <td>39096.267545</td>\n",
" <td>40918.596169</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-335fb64f-2c17-49a7-87a4-579b33dadb12')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-335fb64f-2c17-49a7-87a4-579b33dadb12 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-335fb64f-2c17-49a7-87a4-579b33dadb12');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
" <div id=\"df-9f80e4c7-a196-46ed-a5f0-3e923c843680\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-9f80e4c7-a196-46ed-a5f0-3e923c843680')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-9f80e4c7-a196-46ed-a5f0-3e923c843680 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"merged_dssa\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Actual DSSA\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 372.6593618842817,\n \"min\": 41250.0,\n \"max\": 42150.0,\n \"num_unique_values\": 4,\n \"samples\": [\n 42150.0,\n 42000.0,\n 41575.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Predicted DSSA\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 248.9255214799381,\n \"min\": 38529.78022158146,\n \"max\": 39096.26754462719,\n \"num_unique_values\": 5,\n \"samples\": [\n 39018.76619428396,\n 39096.26754462719,\n 39050.5676522851\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Predicted DSSA GRU\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 328.24824873598226,\n \"min\": 40047.5927644968,\n \"max\": 40918.59616935253,\n \"num_unique_values\": 5,\n \"samples\": [\n 40667.24284052849,\n 40918.59616935253,\n 40418.856358230114\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 9
}
]
},
{
"cell_type": "markdown",
"source": [
"# Plot the predicted vs actual values"
],
"metadata": {
"id": "1OD-IVt3qpKD"
}
},
{
"cell_type": "code",
"source": [
"merged_adro.tail()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "bpxLr6NjsNuc",
"outputId": "0ce40ea5-2ec5-411c-bfa8-bea82645dcb8"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Actual ADRO Predicted ADRO Predicted ADRO GRU\n",
"224 3740.0 3704.371686 3844.406319\n",
"225 3760.0 3725.714683 3855.139246\n",
"226 3760.0 3753.182715 3886.059799\n",
"227 3780.0 3747.377368 3852.010856\n",
"228 3940.0 3775.836353 3923.744762"
],
"text/html": [
"\n",
" <div id=\"df-ba7ca38f-ac0a-4120-817b-d24b6319c257\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Actual ADRO</th>\n",
" <th>Predicted ADRO</th>\n",
" <th>Predicted ADRO GRU</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>224</th>\n",
" <td>3740.0</td>\n",
" <td>3704.371686</td>\n",
" <td>3844.406319</td>\n",
" </tr>\n",
" <tr>\n",
" <th>225</th>\n",
" <td>3760.0</td>\n",
" <td>3725.714683</td>\n",
" <td>3855.139246</td>\n",
" </tr>\n",
" <tr>\n",
" <th>226</th>\n",
" <td>3760.0</td>\n",
" <td>3753.182715</td>\n",
" <td>3886.059799</td>\n",
" </tr>\n",
" <tr>\n",
" <th>227</th>\n",
" <td>3780.0</td>\n",
" <td>3747.377368</td>\n",
" <td>3852.010856</td>\n",
" </tr>\n",
" <tr>\n",
" <th>228</th>\n",
" <td>3940.0</td>\n",
" <td>3775.836353</td>\n",
" <td>3923.744762</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-ba7ca38f-ac0a-4120-817b-d24b6319c257')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-ba7ca38f-ac0a-4120-817b-d24b6319c257 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-ba7ca38f-ac0a-4120-817b-d24b6319c257');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
" <div id=\"df-a15e1346-b8f7-435d-8d96-aa9bc312c0e9\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-a15e1346-b8f7-435d-8d96-aa9bc312c0e9')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-a15e1346-b8f7-435d-8d96-aa9bc312c0e9 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"merged_adro\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Actual ADRO\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 81.7312669668102,\n \"min\": 3740.0,\n \"max\": 3940.0,\n \"num_unique_values\": 4,\n \"samples\": [\n 3760.0,\n 3940.0,\n 3740.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Predicted ADRO\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 27.283215707097145,\n \"min\": 3704.371685743332,\n \"max\": 3775.836352944374,\n \"num_unique_values\": 5,\n \"samples\": [\n 3725.714682996273,\n 3775.836352944374,\n 3753.182715296745\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Predicted ADRO GRU\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 32.86369565366565,\n \"min\": 3844.406318962574,\n \"max\": 3923.744761586189,\n \"num_unique_values\": 5,\n \"samples\": [\n 3855.1392456889153,\n 3923.744761586189,\n 3886.0597985982895\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 10
}
]
},
{
"cell_type": "code",
"source": [
"merged_dssa.tail()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "IhN8Cxu0q4sk",
"outputId": "33759dd0-f8f9-4c31-b2e7-136a07f9b4e0"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Actual DSSA Predicted DSSA Predicted DSSA GRU\n",
"224 41575.0 38529.780222 40659.793050\n",
"225 42150.0 39018.766194 40667.242841\n",
"226 41250.0 39050.567652 40418.856358\n",
"227 42000.0 38706.559837 40047.592764\n",
"228 42000.0 39096.267545 40918.596169"
],
"text/html": [
"\n",
" <div id=\"df-711bc76f-8b67-46cc-a8be-2e990f3f0f8a\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Actual DSSA</th>\n",
" <th>Predicted DSSA</th>\n",
" <th>Predicted DSSA GRU</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>224</th>\n",
" <td>41575.0</td>\n",
" <td>38529.780222</td>\n",
" <td>40659.793050</td>\n",
" </tr>\n",
" <tr>\n",
" <th>225</th>\n",
" <td>42150.0</td>\n",
" <td>39018.766194</td>\n",
" <td>40667.242841</td>\n",
" </tr>\n",
" <tr>\n",
" <th>226</th>\n",
" <td>41250.0</td>\n",
" <td>39050.567652</td>\n",
" <td>40418.856358</td>\n",
" </tr>\n",
" <tr>\n",
" <th>227</th>\n",
" <td>42000.0</td>\n",
" <td>38706.559837</td>\n",
" <td>40047.592764</td>\n",
" </tr>\n",
" <tr>\n",
" <th>228</th>\n",
" <td>42000.0</td>\n",
" <td>39096.267545</td>\n",
" <td>40918.596169</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-711bc76f-8b67-46cc-a8be-2e990f3f0f8a')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-711bc76f-8b67-46cc-a8be-2e990f3f0f8a button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-711bc76f-8b67-46cc-a8be-2e990f3f0f8a');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
" <div id=\"df-1069cc25-536f-4a11-8e08-955154d2f2b8\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-1069cc25-536f-4a11-8e08-955154d2f2b8')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-1069cc25-536f-4a11-8e08-955154d2f2b8 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"summary": "{\n \"name\": \"merged_dssa\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Actual DSSA\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 372.6593618842817,\n \"min\": 41250.0,\n \"max\": 42150.0,\n \"num_unique_values\": 4,\n \"samples\": [\n 42150.0,\n 42000.0,\n 41575.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Predicted DSSA\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 248.9255214799381,\n \"min\": 38529.78022158146,\n \"max\": 39096.26754462719,\n \"num_unique_values\": 5,\n \"samples\": [\n 39018.76619428396,\n 39096.26754462719,\n 39050.5676522851\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Predicted DSSA GRU\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 328.24824873598226,\n \"min\": 40047.5927644968,\n \"max\": 40918.59616935253,\n \"num_unique_values\": 5,\n \"samples\": [\n 40667.24284052849,\n 40918.59616935253,\n 40418.856358230114\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 11
}
]
},
{
"cell_type": "code",
"source": [
"plt.figure(figsize=(16, 4), facecolor=\"#f8f4f4\")\n",
"plt.plot(merged_adro['Actual ADRO'], label='Actual')\n",
"plt.plot(merged_adro['Predicted ADRO'], label='LSTM Predicted')\n",
"plt.plot(merged_adro['Predicted ADRO GRU'], label='GRU Predicted')\n",
"plt.title(\"Prediction for ADRO.JK\")\n",
"plt.legend()\n",
"plt.grid(True, linestyle=\"--\", linewidth=0.5)\n",
"plt.gca().set_facecolor(\"#f8f4f4\")\n",
"plt.tight_layout()\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 306
},
"id": "XXVIi4Vkvzyg",
"outputId": "e0c06861-4598-4d2d-feb3-2cde23745b44"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1600x400 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAAGGCAYAAAAzegNcAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XV8leX/x/HXiXV3NyzoElARpASxULEb7E4sVAy+FurPwETFVlREsVBBQAEBQbpjMGCsO0/9/tg4MBmxAY7D3s/HY48vu+t87pvD233PZ9d1GarLyx2IiIiIiIiIiIiIiIgc44wtXYCIiIiIiIiIiIiIiMihUFNDRERERERERERERERcgpoaIiIiIiIiIiIiIiLiEtTUEBERERERERERERERl6CmhoiIiIiIiIiIiIiIuAQ1NURERERERERERERExCWoqSEiIiIiIiIiIiIiIi5BTQ0REREREREREREREXEJamqIiIiIiIiIiIiIiIhLUFNDREREROQ4kdquHdfecIPz+9lz5uDp68vsOXOO2Gt4+vry5LhxR+x6TfHLr7/S88QTCQgJwdPXl+Li4hapQ0REREREWo6aGiIiIiIiR8CHH3+Mp6+v8ysgJIQOXbpw5913k5OT09LlNcnP06e3WONifwoKCrjsyivx8vLi/158kfcmTsTHx+c/ee233n4bT19fTjn11P0es/ffvU9AAFFxcZzYpw/33Hcfa9as2ef4zK1bG5zj5edHVFwcZ597Ln8tWLDf15k3fz4XXnwx8UlJ+AcHk9quHbfcdhvbsrIO6V5S27Xj3BEj9qn9zrvv3ufYZ59/Hk9fX66/6SbsdvshXV9ERERE5Ggzt3QBIiIiIiLHk0fHjCExMZHq6mrmzZ/P2xMn8vMvv7Bk4UK8vb3/01pO6dOH4vx83N3dm3Tez9On8+bbb/PIww/vs684Px+z+b//vxGLlyyhrKyMRx95hIH9+/+nr/3Z5MkkJCSw6O+/2bRpEykpKY0eN3DAAC679FIcDgelJSUsX7mSjz/9lLfeeYdxTz7JHbfdts85F15wAUOHDMFms7FhwwbenjiRIcOGMXf2bDp06NDg2NffeIN7Ro8mKSmJm268kcjISNatW8f7H3zAV1OmMPXrrzmxd+8jcs/Pv/ACjz3+OJdfdhlvTpiA0ajfhxMRERGRY4OaGiIiIiIiR9CQ006je7duAIy8+mpCgoN5+dVXmfb991x04YWNnlNRUXFURh0YjUY8PT2P6DWP9PUOVW5eHgCBAQFH7JqH8ty3ZGby119/8cWnn3Lr7bfz2RdfMOahhxo9tm2bNlx68cUNtj31+OOcf+GF3P/gg6SlpjJ0yJAG+7t26dLgnD4nn8zZ557L2xMn8sr//Z9z+7z587n3/vs56cQTmTZ1aoMG2XXXXsuAQYO49PLLWbJoEUFBQYf6CBr14v/9H4889hiXXXopb7/xhhoaIiIiInJM0U+nIiIiIiJH0an9+gF10w0BXHvDDYRERLBp82bOOe88QiMjuXrUKADsdjuvTphA1x49CAgJIT4piVtuu42ioqIG13Q4HDz97LOkpKYSFBbGaaefzurVq/d57f2tqbFw0SLOOe88ImNjCQ4Pp0evXrw2YYKzvjfffhtoOKXSbo2tqbF02TLOPvdcwqKiCImIYOgZZ7Bg4cIGx+yenmve/PmMfuABYhMSCA4P58KLLyavvmGxP4OHDuXa668H4OS+ffH09W2wdsjXU6ZwYp8+BIaGEhMfz9WjRrFj584G1zjQcz+Qz7/4gqCgIE4fOpRzhw/n88mTD3rO3kJCQvhw0iTMZjPPPP/8QY8/+aSTANi8ZUuD7U8/+ywGg4GJb7+9z4iflORkxj31FNm7djHxvfeaVN+/vfzqqzw0ZgyXXHwx77z5phoaIiIiInLM0U+oIiIiIiJH0ebNmwEIDg52brNarZw1fDhhYWE8PW4cw885B4Bbbr+dBx9+mBN792b8c89x5RVX8PnkyZw1fDgWi8V5/uNPPsnjTz5Jx44defqpp0hKSuLMc86hsqLioPX8NnMmg4YMYc3atdxy0008+7//0a9vX378+WcArh05koEDBgDw3sSJzq/9Wb16NQNPO40VK1Zw95138uD995O5dSunnX46Cxct2uf4u++9l+UrVvDwgw9y/bXX8sNPP3HXPfccsOb7R49m1DXXAHXTe703cSLXjhwJ1DVLLrvySkwmE08+/jjXXHMN3373HQMGD95nIfH9PfcD+fyLLzjn7LNxd3fnwgsuYOPGjfy9ePFBz9tbfFwcp/Tpw8KFCyktLT3gsVvrm19BgYHObZWVlfw+axYnn3QSSYmJjZ53wfnn4+Hh4fx7bI7XJkzg/gcf5KILL2TiW2+poSEiIiIixyRNPyUiIiIicgSVlJSQn59PdU0N8+fP53/PPIOXlxfDTj/deUxNTQ3nnXsuTz3+uHPb3HnzeH/SJCa99x4X7zVNVb++fTlr+HC+/uYbLr7wQvLy8njx//6P04cOZcqXX2IwGAB4dOxYnhs//oC12Ww2br39diIjI1k4bx6Be31w7nA4AOjdqxdt27RhxsyZ+0yl1JixTzyBxWJhxq+/kpyUBMBll15Kp65deWjMGH6bPr3B8cHBwfzw3XfOuu12OxPeeIOSkhIC9jO11KABA9i5cyfvvv9+g+m9LBYLYx55hPbt2vHb9OnOqbFOPvFEzh0xgldee41Hx4xxXqex534gS/75h3Xr1/PiCy/UXfekk4iJieHzL76gR/fuh3SN3dq3a8fvs2axdds2Ou61VkZlZSX5+fnYbDY2btrE/Q8+CMC5w4c7j9m4aRNWq5VOHTvu9/oeHh6ktm3LunXrmlTXbj/+/DPbtm3jwgsu4L133sFkMjXrOiIiIiIiR5t+9UZERERE5AgadtZZxCYm0iYtjSuuvhofX18mf/YZMdHRDY67/tprG3w/5ZtvCAgIYGD//uTn5zu/unbpgu9eU0jN/P13amtrufnGG52NAYDbbrnloLUtXbaMzMxMbrvllgYNDaDBtQ6VzWbjt5kzOfvMM50NDYCoyEguuuAC5s2fv8/IhFHXXNPgtU4+6SRsNhvbsrKa/PqLlywhNy+PG667rsFaH6cPHUpaaio//6uhAvs+9wP5/IsviAgP59S+fYG6Z3TB+efz5VdfYbPZmlTr7rU7ysrKGmx/ctw4YhMTSUhJYeBpp7F23Tqeffppzjv3XOcxu8/x3WsasMb4+vkddCTI/uTm5gKQmJCghoaIiIiIHNM0UkNERERE5Ah6+cUXadO2LWaTiYjwcFJTU/eZxsdsNhMbE9Ng28ZNmygpKSFur+bA3navO7H7w/+UlJQG+8PCwg66QPTuqbDatWt36Dd0AHn5+VRWVtK2bdt99qWnpWG329m+fXuD14uLi2tw3O7myr/XDTkU27ZtA2j09dNSU5k3f36DbY099/2x2Wx8+dVX9O3bl8zMTOf2E3r04P9eeYWZs2YxeODAQ661on5qMD8/vwbbR11zDeeddx411dXMmj2bCW+8sU/DZPc55eXlB3yN8rKyfa5/qC6/9FKyd+3iufHjCQ0N5fZbb23WdUREREREjjY1NUREREREjqAePXo4p0faHw8Pj30aHXa7nfCwMN7fz0LPYaGhR6zGlrS/UQC7p786mhp77vvz++zZZO/axZdffcWXX321z/7Pv/iiSU2NVatXYzKZSExIaLC9TZs2DOzfH4Bhp5+OyWRizKOP0q9vX+f7KCU5GbPZzIqVK/d7/ZqaGtZv2EC3g7z39sdsNvPJhx9y1vDh3P/ggwQEBHDVFVc061oiIiIiIkeTmhoiIiIiIseA5KQkZv7+Oyf17o2Xl9d+j4uvH+mwadOmBlM+5eXlHXS0Q3JyMlC/uHf9B+mNOdSpqMJCQ/H29mbDhg377Fu3fj1Go5HY2NhDulZzxMfHA7Bhwwb6n3pqg33rN2xw7m+Oz7/4gvCwMP7vxRf32Tf1u+/4bto0qqqqDvh3tdu2rCz++PNPevXsedCRFPffdx/vTZrE2CeeYNrUqUDd1FX9+vZl1uzZbN22jYRG7uurKVOoqalh2NChh3aDjfD09OTryZMZMmwYN996K4EBAZxz9tnNvp6IiIiIyNGgNTVERERERI4B5593Hjabjf89++w++6xWK8XFxQAM6N8fNzc3Xn/zzQajG16dMOGgr9G1SxcSExN5dcIE5/V22/tau9d/+Pcx/2YymRg0YADTfviBzK1bndtzcnL44ssvOenEE/H39z9oXc3VvVs3wsPCeOfdd6mpqXFun/7LL6xdt46hQ4Y067pVVVV8+913nH766Zx37rn7fN10ww2UlZXx/Q8/HPRahYWFXHnNNdhsNh4YPfqgxwcGBnLtyJH8+ttvLFu+3Ln9gdGjcTgcXHfDDVRVVTU4Z0tmJg+PGUNUZCTXjhzp3L5u3bomr1Xi7+/Pd998Q0pyMldecw0zf/+9SeeLiIiIiBxtGqkhIiIiInIM6HvKKVw7ciTPjx/P8uXLGTRwIG5mMxs3bWLKN98w/rnnOO/ccwkLC+POO+7g+fHjOXfECIaedhpLly/nl19+ITQk5ICvYTQaefX//o/zLriAniedxJWXX05kZCTr169n9Zo1fP/tt0Bd8wPg7vvuY/CgQZiMRi684IJGrzn20UeZ8fvvDBw8mOuvuw6z2czE996jpqaG/z311BF9Rv/m5ubGU08+yfU33sjgoUO5cMQIcvLymPD66yQkJDR7XYjvf/iBsrIyzhw2rNH9vXr2JCw0lM8nT+aCESOc2zds3Minn3+Ow+GgrLSU5StWMGXqVMrLy3numWc4bfDgQ3r9W26+mVcnTGD8Cy/w0QcfAHBKnz4887//MfqBB+jRuzdXXHaZ8+/uvUmTsNvtTP366wbrqnTu3p1T+vTh159/btL9h4WF8cO0afQfNIgLL7mEn77/nhN69GjSNUREREREjhY1NUREREREjhGvvfIKXbt25d333uPRsWMxm80kxMdzycUXc+KJJzqPe/zRR/H08GDiu+8ye84cTujRg++//Zbhe33Avj+DBw1i+o8/Mu7pp3n51Vex2+0kJyUx8uqrnccMP+ccbr7xRr786is+q/+Qfn9NjXbt2jHjl1945LHHeP6FF7Db7ZzQowfvT5xIzxNOOOxncjBXXn453l5ejH/xRR5+9FF8fHw4+6yzGPfkk85FyJvq88mT8fT0ZOCAAY3uNxqNDB06lM+/+IKCggJC6ptJM2bOZMbMmRiNRvz9/UlMSODySy9l1DXXkJGRccivHx0VxUUXXsinn33G2M2bSamfNuz2W2+lW9euvPzqq7w2YQIlpaVERkZy3vDh3D96dKPTUv2bw+HY77ome4uLjeWHb79l4Gmncc555/Hbzz8fsQXmRUREREQOh6G6vPzor8gnIiIiIiIiLS4qLo6hQ4bw/sSJLV2KiIiIiEizaE0NERERERGRVmDT5s0UFRWRkZ7e0qWIiIiIiDSbpp8SERERERE5jm3esoXp06fz9sSJuLu7N1gHRERERETE1WikhoiIiIiIyHHsz7lzGf3gg7i7u/PVF1+QlJjY0iWJiIiIiDSb1tQQERERERERERERERGXoJEaIiIiIiIiIiIiIiLiEtTUEBERERERERERERERl3DcLhRut9vJzs7G19cXg8HQ0uWIiIiIiIiIiIiIiMh+OBwOysvLiYqKwmjc/3iM47apkZ2dTUpaWkuXISIiIiIiIiIiIiIih2jTunXExMTsd/9x29Tw9fUF6h6An59fC1dz7CgtK8Nfz0NEXJDyS0RclfJLRFyV8ktEXJXyS8Q1lZWVkZKW5vxsf3+O26bG7imn/Pz88Pf3b+Fqjh0bNm8m9gBdLhGRY5XyS0RclfJLRFyV8ktEXJXyS8S1HWw5CS0ULiIiIiIiIiIiIiIiLkFNjVamTVJSS5cgItIsyi8RcVXKLxFxVcovEXFVyi+R45uaGq1McWlpS5cgItIsyi8RcVXKLxFxVcovEXFVyi+R49txu6bGobA7HFgsFnA4WrqU/0xBYSGR4eEtXUbrYTDg5uaG8SDzwInIweUXFJAQF9fSZYiINJnyS0RclfJLRFyV8kvk+NZqmxoWi4WsnTtxtKKGBoCXtzfbs7NbuoxWxWAwEBcdjZubW0uXIuLS1BwUEVel/BIRV6X8EhFXpfwSOb4ZqsvLj8tP9UtLSwmPjiZ35078/f0b7HM4HOzctQubw0FUZCRGo2bhkqPDbreTvWsXJoOB6MhIDPqPqoiIiIiIiIiIiMg+DvSZ/t5a5UgNm81GdU0N0dHReHt7t3Q5/6mqqiq8vLxauoxWJSw0lJ07d2Kz2TCbW+U/OZEjYtnKlXTu0KGlyxARaTLll4i4KuWXiLgq5ZfI8a1VDlGw2e0ArXI6oONyWM4xbvf7bPf7TkSax2q1tnQJIiLNovwSEVel/BIRV6X8Ejm+tcqmxu6FwVvjVEAmk6mlS2h1nO+zVrZ+i8iRFhwY2NIliIg0i/JLRFyV8ktEXJXyS+T41jqbGq2Ym6Y/EhEXFRYa2tIliIg0i/JLRFyV8ktEXJXyS+T4pqZGK1NdU3NUrmsym5n67bdH5doiIgDrNm5s6RJERJpF+SUirkr5JSKuSvklcnxTU8MFzZ8/Hzd3d84866wmnZecksKECROOUlUiIiIiIiIiIiIiTVNlsTH87b958ucNDbZb7VaumXkt989/qIUqk2OVmhou6L333+fWW2/ljz/+YOfOnU0616w1NUTERSUnJrZ0CSIizaL8EhFXpfwSEVel/HItq3eVsyannC+W7MRiszu3b6/YwYrClczYMZPimpIWrFCONWpquJjy8nImT57MjTfcwLBhw/jggw8a7J82bRq9evfG28eH8IgIzjv/fAAGDBjA1q1bufe++zCZzZjq19Z4/PHH6da9e4NrvPzyyySnpDi/X7RoEacNGUJ4RARBwcH079+fJUuWHOU7FRFpqKKioqVLEBFpFuWXiLgq5ZeIuCrll2sprrQAYLE52Jxf6dxeWF3o/POGkg37nCetl5oagMPhoLLW2iJfDoejSbVO/vJL0tPTSUtL47JLL+X9SZOc1/jhhx84f8QITh86lMV//82vv/xCzxNOAOCrr74iNjaWMWPGsGP7dnZs337Ir1lWVsaVV17JnNmzmTd3Lm3atuXMs86irKysSbWLiByOnLy8li5BRKRZlF8i4qqUXyLiqpRfrqW4yuL885qccuefC6oLnH9eX6ymhuxhPpyTn3/hBR557DFuvflmxj/3HADV1dXc/+CDfPn119TU1DB44EBefuklIiIinOdty8ri9jvvZPacOfj6+HD5ZZfx5OOPYzbvKWf2nDnc/+CDrF6zhtjYWB4YPZorL7/8cMrdryqLjQ6P/3ZUrn0wKx8bhLf7of81vP/ee1x26aUADB06lFHXXsvs2bM59dRTefrpp7nooosYO3as8/jOnTsDEBwcjMlkwtfXl8jIyCbVOGDAgAbfv/XmmwSHhDB79mzOPPPMJl1LREREREREREREZLe9mxrr9m5q1GikhjSu2SM1/l68mInvvUfHDh0abL/v/vv54aef+OTDD/n155/J3rWLiy67zLnfZrNx7vnnU1tby6wZM5j49tt89PHHPP7UU85jtmRmcu6IEfTr25eF8+Zx2803c9Mtt/Drby3TeDhWrFu3joWLFnHxxRcDYDabufDCC3nv/fcBWLps2T4NiH9zd3Nr8uvm5ORw/Q03kJaeTlBwMIFBQZSXl5OVldX0mxARaaZu9U1aERFXo/wSEVel/BIRV6X8ci3FlVbnn9fm7Jk6bO/pp9aXbPxPa5JjW7NGapSXl3P1qFG8/tprPPPss87tJSUlTPrwQz547z36n3oqAG+/8Qadu3dnwcKF9OrZk99mzGDN2rX8OG0aERERdO7UicceeYSHH32URx56CHd3dya++y6JCQk8+/TTAKSnpzNv/nxeee01Bg8adPh3/S9ebiZWPnbkr3uor32o3nvvPaxWK7Fxcc5tDocDDw8PXn3lFby8vA56DYvV2uB7o9G4zxRYFoulwfdXX3MNhYWFvPTiiyQkJODh4cHJffpQW1t7yLWLiByuVWvW0KFdu5YuQ0SkyZRfIuKqlF8i4qqUX67l39NPORwODAYDhXuN1NhSugWr3YrZeFgTD8lxolkjNe64+25OHzKEgf37N9i+5J9/sFgsDNhre1paGnFxcSxYuBCAvxYsoEP79g2moxo0aBClpaWsXrPGecyAf1170KBBzmscaQaDAW93c4t8GQyGQ6rRarXy0ccfM/7551myeLHz658lS4iOjuazzz+nU8eOzJw5c7/XcHd3x/qvpkZoWBi7du1q0NhYumxZg2PmzZvHrbfeyrBhw2jfvj0eHh7k5+c34QmLiBy+GjVSRcRFKb9ExFUpv0TEVSm/XMveTY2iSgu55XV/fwV7jdSw2C1klmX+16XJMarJra3JX37J0qVLmTtnzj77cnJzcXd3JzAwsMH2iPBwcnJy6o7JySE8PHyf/bv37b5OY8eUlpZSVVXV6IiEmpoaampqnN8fb4tYf//DDxQVFTFy5EgCAgIa7Dvv3HN5//33efaZZxh82mmkJCdz0UUXYbVa+emnnxg9ejQACQkJzJs3jx07duDh4UFoaCin9uvHbXl5PP/885x//vlMnz6dn3/+GX9/f+f127Zty8cff0yP7t0pLS3l/vvvP6RRISIiR1LgXrkkIuJKlF8i4qqUXyLiqpRfrmXvpgbA2pxyIvw8nE0NAwYcOFhfvIE2AW1aokQ5xjSpqZG1fTv3jh7ND9Om4enpebRqapbnxo9nXP10VXtbumIFPj4+dO7QgfUbN1JVXY2vjw8mNzeqqquxOxy4u7nhYM+0S16entTU1mK32zEajXi4u1NVXQ2Am5sbBqC2/lhPT08stbXY7HaMBgMenp5UVVXVHWs2YzAandM0eXp4YLFYsNntGAwGvDw9qaw/1mw2YzIanZ1kTw8PLFYrNpsNA3VTT5166qm4ubtTW1uLyWRyHjt8+HCeHz8ebx8fPvzwQ8aPH8+zzz2Hn58fffr0wWa3U1NTw4MPPsidd95J29RUampqKCsrIyMjg5deeonx48fz1LhxnHvuudx2221MmjQJq82Gw27n1Vdf5fbbb6fHCScQGxvLY489xtaHH8bucDjrB7BZrc7vvTw9qampwe5wNPoM2d/zNhjw8PDYc6y5bjRLY8/bYDDgebDnvfsZHuR5e3h4YN3reXt5ee051mRq8Lw93N2x2WxYbTYAvL28qKqqwgGYTCbczGaq6xtsHu7uWKxWai0WVq1dS9dOnVi1Zg01tbUE+vsTFRnJmvXrAUiMj6empobs+uZel44dWbdhA1XV1fj7+REXE8OqtWsBiIuNxW6zsSM7G4CO7duzacsWKisr8fHxITkhgRWrVwMQEx2N0WAga8cOANpnZLAtK4uy8nK8PD1JbdOGZStXAhAVGYm7mxtb69dLyUhLY2d2NiWlpXh4eNAuLY1/li8H6hqN3l5ebNm6FYC0tm3JzcujqLgYNzc3OrVvz5Jly3A4HISFhuLv58emLVsAaJuSQmFREQWFhZhMJrp07MjSFSuw2WyEBAcTHBTEhk2bAEhJSqK0rIy8/HwMBgPdOndm+apVWCwWggIDCQ8LY92GusWikhISqKyqIic3F4CunTqxet06ampqCPD3JzoqijXr1gGQEBdHrcVC9q5dAA0yws/Xl/i4OFbVjx6Li4nB7nCwY+fOuufdrh2bt26loqICb29vUpKSWLFqVd3zjorCaDKRtX173fNOTydrxw5Ky8rw8vQkrW1blq5YUfe8IyLw8PAgc9u2uuedmkr2rl0Ul5bi4e5O+4wMltSPnIoIC8PHx4fNmZl1z7tNG/Ly8yksLsZsNtO5Qwf+WbYMu8NBaEgIgf7+bKx/3m2SkykuLia/sBCj0UjXTp1YtmIFVpuN4KAgQkNCWL+xbm7K5MREysvLya0fjdW9SxdWrFpFrcVCYEAAkRERrN3rPVtdXc2u+ufdpWNH1q5fT3VNDf5+fsTGxLC6/j0bHxuL1WplZ/3z7tShAxs3baKyqgpfHx8S4+NZWf+8Y6OjAdhe/7w7ZGSQuW0bJaWl1K5bR5uUFJbXv2ejIyMxm81sq3/e7dLT2V7/vD09PEhPTXU+78jwcDw9PZ3POz01lV05ORSXlODu5kbH9u1ZvHQpAOGhofj6+jqfd2qbNuQXFFBYVITZZKJzx478s3w5drud0OBgAgMD2bh5c93zTkqiuLSU/IICjAYDXTt3ZtnKlVitVoIDAwkLDWXdXs+7oqKCnLw8oG7eV2WEMkIZ0byMKK+owNvL65jMCF9fX+e5yghlhDJCGeFKP0fYbDbiLBZlBMoIZYQywtV+jigsLqZ46VJlhItkxM7Cul9OD/Q0UVxtY8Y/G+jXJoScsrpnlOydzKbKTfyxYR4RRVHKiOM4I3bfy8EYqsvLHQc/rM5306Zx4SWXYDLtWQdi9wfGRqORaVOnMuyss9i1fXuD0RptMzK47ZZbuP3WW3n8ySf54ccfWTh/vnP/lsxMMjp04K+5c+nSuTMDTzuNrl26MP6555zHfPDRR9x3//3k1r+p/q2xkRopaWnk7tzZYNTB7mO3Z2eTmJh4zDVnjrbKqiq8NcriP1VdXU1mZiaxUVF4eHi0dDkiLmvx0qV079KlpcsQEWky5ZeIuCrll4i4KuWXa+nz0jzyymsZ1i6MH1fnMaxdGC+e146Tv+lHrb2WkelX897aSfQK78mEvq+0dLlyFJWWlhIeHd3oZ/p7a9KaGv1PPZXFCxawcN4851f3bt24+KKLnH92c3Pj91mznOesX7+erKwsevXsCUDvXr1YuWoVufWdNIAZM2fi7+9PRnq685i9r7H7mN3XaIyHhwf+/v7OLz8/v6bcmoiIiIiIiIiIiIj8hxwOB8WVdTO09E4KAmBtTgUV1gpq7XWzpvSKqPtMeEPJhpYpUo45TZp+ys/Pj/bt2zfY5u3tTUhwsHP71VdeyegHHyQoKAh/f3/uvvdeevfq5WxIDBo4kIz0dEZedx3/e+opcnJyePyJJ7jh+uudv8V+7ahRvPHWWzw0ZgxXXXEFs2bP5uspU5j69ddH4p5bNXd395YuQUSkWRLj41u6BBGRZlF+iYirUn6JiKtSfrmOilobFnvdREInJtY1NTILK9lRXjctko/Zm/ZB7TBipLCmiPzqAkI9Q1qsXjk2NGmkxqF4/tlnGTZ0KJdcfjmDhgwhIjyczz/91LnfZDIx5auvMJlM9BswgGtGjeKySy/lsTFjnMckJSbyzVdfMWPmTE448UT+79VXeWPCBAYPGnSky211HHZ7S5cgItIse08xKCLiSpRfIuKqlF8i4qqUX65j9yLh7iYDcUGehPi4YXfAil11SxCEeIbgafYk3i8OgA3FGq0hTRyp0Zhff/65wfeenp68/NJLvPzSS/s9JyE+nm+nTDngdfv17cuCefMOtzz5F4vV6lyoW0TElWTn5BAdFdXSZYiINJnyS0RclfJLRFyV8st1FFdZAQj0dsNgMJAe4cvczUWszqtbaDrYIxiAtgFtySzbyvqSDZwY2bvF6pVjwxEfqSEiIiIiIiIiIiIicjC719MI9Kr7Jez0CF8ANhfnABDsWdfUSA1sC8B6jdQQ1NRodby8vFq6BBGRZunSsWNLlyAi0izKLxFxVcovEXFVyi/XsXv6qX83NXaW5wMQ4rlnpAZosXCpo6ZGK1NTXd3SJYiINMu6DfrBRURck/JLRFyV8ktEXJXyy3UU1Y/UCPKqWyUhPcIHgILqQmDP9FOpgW0A2Fq2jRqb66+ZsnxnKWe/tYj/+31LS5fiktTUaGXsDkdLlyAi0ixVasqKiItSfomIq1J+iYirUn65DudIDe+6kRpJId64mwxYDaXAnumnwjzDCHAPwOawsbnU9RsBi7YWsy63gvW55S1diktSU6OVMRn1Vy4irsnfz6+lSxARaRbll4i4KuWXiLgq5Zfr2L1QeFD99FNuJiNtw3wwmus+7A+pH6lhMBhIDTh+1tVYuLUYs/8SusX7tHQpLkmfcLcybu7uLV3CETNr1ixMZjPFxcUATPrgA4JDQlqkluSUFF5++eUWeW2R1iIuJqalSxARaRbll4i4KuWXiLgq5ZfrcC4UXj9SAyAtwheDqQyAEM89n/W1rZ+CytXX1bDZHSwumINXzGS+L3oYm8PW0iW5HDU1XMg1I0dy7nnn7Xf/smXLOGf4cCKjovD28SE5JYWLL7mE3NxcHn/8cUxmM25ubpjM5ka/dr+GyWzmpptv3uf6t952GyazmWtGjtxvDbsbDbu/oqKjGXHBBWzevPnwH8BBXHThhaxds+aQj1cjQsS1rFq7tqVLEBFpFuWXiLgq5ZeIuCrll+v490LhULeuhqF+pMbu6aeA42akxppdJdiDfgJgaMIATAZTC1fketTUOE7k5eUx+LTTCA4O5qcff2TVypW8O3Ei0VFRVFRUcM8997Bj+3Y2btzIju3biY2N5fGxY9mxfbvza7e4uDi++OILqqqqnNuqq6v57LPPiI+PP6R61qxezfasLL74/HNWr17NOcOHY7Pt23V0OBxYrdbDfwCAl5cX4eHhR+RaIiIiIiIiIiIicnQVOZsaZue2xDAjBmPd54W7p58CaBtY19TYULIRx37WDd5Ysoklef8crXKPiElrvsLoXoDZ4ccVqZe2dDkuSU2N48TcefMoKSnhnbffpmvXriQlJdG/f39efPFFkpKS8PX1JTIykrjYWCIjIzGZTPj5+REZGen82q1r167ExcUx5ZtvnNumfPMN8fHxdOnS5ZDqCQ8PJyoqir59+zJmzBhWr17Nxo0bnSM5fvrpJ07o2RMvb2/+/PNP7HY7zzzzDClt2uDj60vXbt346uuvG1zzxx9/JD0jAx9fXwYOHEjm1q0N9jc2/dS0adPo1bs33j4+hEdEcN755wMwYMAAtm7dyt333NNgpArAn3/+Sb9+/fDx9SUhMZE77ryTiooK5/7c3FzOPuccfHx9SWnThk8+/fSQnomIHJ642NiWLkFEpFmUXyLiqpRfIuKqlF+uY/eaGntPPxXqXwOAw+ZOjWXPKIYkv0RMBhNlljJyqnL2uVZ+VT6jfr+O62ffxMqClUe58uapsFQwt2gyAD0DLsDHTWtqNIeaGgAOB9RWtMzXfrqKTRUZEYHVauWbqVP326kEONRXu+bqq/lg0iTn95Pef5+rr7qqWbV5eXkBUFtb69z20MMP879x41i1ciWdOnXimWee4aOPP+b1CRNYsXw5d9xxB1deeSWzZ88GICsrixEXXMCZZ5zBksWLGTlqFA899NABX/eHH37g/BEjOH3oUBb//Te//vILPU84AYCvvvpqn9EqAJs2bWLYGWdw3nnnsfSff/js00+ZO3cut91++55nM3Ik27dvZ8ZvvzH5iy948403yM3NbdazEZFDZ29ktJeIiCtQfomIq1J+iYirUn65DueaGntNP2WhFACHzY91uXt+0djd5E6SfyLQ+BRUE1a+QYW1EoDXV711tEo+LB+v/xQLpdhrQ7gsdf/LDMiBmQ9+SCtgqcT4bFyLvLT9/ixwP/yOXO/evXnwgQe4/PLLufnmmznhhBMY0L8/V1xxBREREc7jLBYLbuaD/7VfdtllPPTww2ytHw0xd948Pv30U2bVNxkOVXZ2Ni++8AIxMTGkpaUxb948AMaOHcvgwYMBqKmp4elnnuGX6dM58cQTAUhOTmbu3Lm8/c479OvXjzfffJOUlBTGjx8PQFpaGitXrOC555/f72s//fTTXHTRRYwdO9a5rXPnzgAEBwc3GK2y2zPPPsull17KHXfcAUDbtm35v5deov+AAbw+YQLbtm3j559/5q/58zmhvkHyzjvv0L5DhyY9FxFpuh3Z2UTulWciIq5C+SUirkr5JSKuSvnlGmptdipq6xpQezc1CqoLAXBYfVmbU07PhEDnvrYBbdlYson1JRvoG32Kc/uqwtVM2/oDACaDiYW5i1iU+zcnhPf4D+4ErHYra4vWkh6UjtnY+GevBdUFfLjuEwBsBafTNTa40ePk4DRS4zjy1FNPsXPHDl5//XXat2vHW2+/Tbv27VmxYkWTrxUWFsawYcP44IMPmDRpEsOGDSM0NPSQz49PSMDP35/YuDgqKiv5cvJk3N3dnft7dO/u/PPGjRuprKxkyNCh+AcEOL8++ugjNm/aBMCatWvp2bNng9foXd8A2Z+ly5YxYMCAQ64ZYPny5XzwwQcN6jh92DDsdjtbtmxhzdq1mM1muu9Vf3p6OoGBgU16HRERERERERERkdZs9ygNA+DvuacRsLupYbf6smZXeYNz0navq1G80bnN4XAwfumLAAyLP53zk88F4PWVbx5wRpsjJa8qj+tn38TVv1/LzXNuo7S2tNHjJq55jxp7NbaqODoGnIy7WR/NN5dGagC4edeNmGih1z6SQkJCuGDECC4YMYJx48bRvUcPXnjxRSa9/z4AXp6eh3yta66+mtvrRyy8+sorTapj9qxZ+Pv7Ex4ejp+f3z77fXz2jE4pL68Lp2nffUdMTEyD4zw8PJr0unvbPe1VU5SXl3P99ddz26237rMvPj6e9Rv2HdomIv+Nju3bt3QJIiLNovwSEVel/BIRV6X8cg3F9YuEB3iZMRkNzu2FNfUjNWx+rMtp2NRoG7B7sfA9n9H9nDWdFYUr8TJ5cWvHmzAaTHybOY0VhSv5I/vPBiM6jrRl+csZ/deDFFQXALAk/x+unXUDL5/8IlE+Uc7jtpVtY8rmqQDU5A6lZ/fAo1ZTa6B2EIDBUDcFVEt8GQwHr6+Z3N3dSU5ObrDIdc1e61oczNChQ6mtrcVisTBkyJAmvXZSUhIpKSmNNjT+rV27dnh4eLAtK4s2bdo0+IqLq5sWLCM9nUWLFjU4b8Fffx3wup06dmTmzJn73e/u7o7tX3Msdu3alTWrV+9TR5s2bXB3dyc9LQ2r1crixYud56xbt47i4uKD3qeIHJ5NW7a0dAkiIs2i/BIRV6X8EhFXpfxyDc5FwveaegoaTj+1Ia8Ci83u3JdaP1Ijq3w7VdYqKq2VvLJ8AgDXpF9FuFc4oZ4hXNzmQgDeWPUWdoedI83hcPD15m+4YfbNFFQXkOyfzPiTniPcK4zNpVu4+vdrWVu01nn866vewuawYarOwFaZwgl7TaklTaeRGi6mtKSEpUuXNtgWEhLCsmXL+GLyZC668EJSU1NxOBx8//33/PTTT7z77rvOY+32Q/9HbDKZWLVypfPPR4ufnx/33H0399xzD3a7nT4nn0xJSQnz5s3Dz9+fq668khtuuIEXX3qJ0aNHM2rUKBYvWcIHH354wOs+8sgjDD7tNFKSk7nooouwWq389NNPjB49GoCEhATm/PEHF110ER4eHoSGhjL6vvs46eSTue322xk1ciQ+Pj6sXrOG3377jVdfeYW0tDSGDBnCTTffzITXXsNsNnP33Xc3a1SIiDRNZWVlS5cgItIsyi8RcVXKLxFxVcov17B7+qkg74ZNjd0jNdzwp8LmYEtBJanhvnXHegQR6hlKfnU+G0s28Wf2XPKq84j2juKy1Euc17gy7XK+2jSFDSUb+XX7DIbEDT5iddfYanjun/F8mzkNgIExA3jshDF4m73JCEznjrl3sbFkE9fNuolneo8jwCOA37bPwICB0p1DMBsNdI7xP2L1tEYaqeFiZs2eTfcePRp8PfHkk7Rr1w5vb2/uGz2abt27c9LJJ/Pll1/y9ttvc8XllzvPNxqb9lfu7++Pv//R/0f2xBNPMObhh3n22Wdp36EDw844gx9+/JGkxESgbuqnLydP5tvvvqNrt268/dZbPPXUUwe85qmnnsoXX3zBtO+/p1v37gwaPJiFe432eHzsWLZu3Urb1FQi6hcL79SpE7/PnMn69evpd+qpdO/Rg7FjxxIdtWe42HvvvktUVBT9BwxgxAUXcO111xEeHn7kH4qINLD3tHUiIq5E+SUirkr5JSKuSvnlGnZPP/XvkRqF9SM1Ynzr1vddm1PRYH9qQBsAZu2czUfr6xbevrPz7XiY9kxjH+AewBVplwHw5qq3sNqth12vxW5hcd4Srp91E99mTsOIkds63sIzvcfhba5bYiDCO5yJp75Fz/AeVNmquHvefTy84FEAOvqdir0mkg5Rfni7H71fIG8NDNXl5Ud/tZQWUFpaSnh0NLk7d+7zoXxNTQ3bs7NJTEzEswlrTBwPHA4HhqM45ZXsq7q6mszMTGKjog5rjRCR1q62thZ3d/eWLkNEpMmUXyLiqpRfIuKqlF+u4e25W3lh5hbO7RTBM+dkOLef/eO57KzM5mTPR/j5Hx9GnRjH6EEpzv2vrpjAB+s+woABBw56hHXnjb6v7fOZZ4WlguE/j6Copogx3R9keNI5Ta4xqzyL+bsWMD/nLxbnLaHSWjcKyN/Nn//1epLekb0aPc9itzBu8dN8v/VHANyN7vQ2P80Pyyxce2Ic9+11P7LHgT7T35tGarQyVdXVLV2CiEizrFi9uqVLEBFpFuWXiLgq5ZeIuCrll2so2r2mxl7TTzkcDgrqp5/KCKubOWXtfhYLd+DAiJF7Ot/Z6C9x+7j5cHXalQC8s/o9amw1h1zb1C3fcc5P53Puzxfw3NLx/JH9J5XWSoI8ghgWfzofDnx/vw0NADejG4/1eITrMkbhZnTj+nbXsjKrbiUIradx+LSmhoiIiIiIiIiIiIj8p3avqbH39FOV1kpn86FbVAxQyqrsMqotNjzd6qZs2r1YOMB5ycNpu9f3/zYi5Tw+3fAZOVU5TNk8lUvaXnTAmix2C8/98wLfbJkKgNlgpnNoJ3pH9OLEiF6kBqZiNBzaOAGDwcAN7a/jmvSrKKp08HThfAxAtzitp3G41NRoZdzc3A5+kIjIMSgmOrqlSxARaRbll4i4KuWXiLgq5ZdrKGpkofDdi4R7mbzoEh1GuN8mcstqeW1OJvcOrJuyKd43jlifWGrtNdzY/voDvoaHyYNrM0YybskzvLd2Ekn+ifQK79noyI78qnxG//UgywtWYMDAje2v5+I2F+LjdnhrtLib3Fm8LReAjEhf/D31+ezh0vRTrYxW0xARV2XUekAi4qKUXyLiqpRfIuKqlF+uobGFwgvqFwkP9gzG3WzksdNTAXhvfharsssAMBvNfH7ax3x52ucEegQe9HXOSjyTRL8EimqKuPWPO7hq5kh+3zELu8PuPGZlwUqumHENywtW4Ovmy/+d/AKjMq457IbGbou2FQPQIz7giFyvtVNTo5WptVhaugQRkWbJ2rGjpUsQEWkW5ZeIuCrll4i4KuWXa9jT1NgzmdDukRohHsEADEoL5fR2Ydgc8PC0dVhsdY0IT5PnITcczEYzb/Z7nYvbXIiHyYPVRWu4b/4DXPTLpXy/9UembvmW62bfRF51Hkl+iXw44D1OjjrpSN4qf28tAeCE+MAjet3WSk0NEREREREREREREflPFe9eKLzBSI0CoG6kxm5jhrQlwNPMmpxy3puf1azXCvUM4d4ud/P9sKmMTL8aXzdftpRlMnbREzy1+GksdgunRvdj0oB3ifeLP4y72ldRpYX1eRWARmocKWpqtDKenp4tXYKISLO0z8ho6RJERJpF+SUirkr5JSKuSvl17LM7HJTsHqmx95oa1UVAw6ZGqK87D53WBoDX5mSyOb+y2a8b5BHEzR1u5PthU7m1w80EewTVrZ/R7nqeO/HpIzbd1N4WZ9WN0kgJ9SbYx/2IX781UlOjlamtrW3pEkREmmVbVvN+G0NEpKUpv0TEVSm/RMRVKb+OfWXVVuyOuj8H7T1S41/TT+12TqcI+qQEUWtzMOb7ddgdjsN6fV83X65Ov5Jpw6by4xnfcW27kRgNR+ej8kVbiwGN0jiS1NRoZex2+8EPEhE5BpWVl7d0CSIizaL8EhFXpfwSEVel/Dr27V5Pw9vNiLt5z0fUhfULhYd4NmxqGAwGnhiWhrebkcVZJXy2eOcRqcPD5EGYV9gRudb+7F4kXOtpHDlqarQyRoOhpUtosgEDBnDX3Xc7v09OSeHll1/+z+uY9MEHBIeE/OevKyJ1vDR9noi4KOWXiLgq5ZeIuCrl17GvqHLfqadgT1Nj9/RTpoVvYJ56LeavryBx+pXMDHqab93H0GfmeVi/vAZD3tr/tvAmKq+xsmZXXZNNIzWOHDU1XMyuXbu48667SE1Lw9vHh6joaE455RTeePNNKiv3zCeXnJKCyWzGZDbj6+dH5y5dmPjuu3h4eDiPOdCH9CazmanffrvfOgYMGOC8vrePDx06duSNN944cjd6AAv++ovrrrvukI5VI0Lk+JHapk1LlyAi0izKLxFxVcovEXFVyq9j3+5Fwveeegr2TD8V7BEMJVmYZz+JacOPmDbPwLjtTyJLl9HZuJlUQxY+mdMxTxrE/NdHMfqT2dz4+Qpu/HwF42dsOuzpqY4Eh8PBj6tysTsgNtCTqICGzTZD7iqwNH99kNZMTQ0XsnnzZrr36MGvv/7KU089xeK//2bun39y73338cMPP/DbjBkNjn987Fh2bN/O8mXLuOzSS7nhhhv49rvvjlg91157LTu2b2flihVcMGIEt952G599/nmjxx7JtTzCwsLw9vY+YtcTEdewbOXKli5BRKRZlF8i4qqUXyLiqpRfx77i/YzUKKguAOqmnzIUbgLA4ReFZegLWM54Dcs5E9k26B1GWe/nB1tPjNg5teInxu24hnab32X+hp28My+LX9bk/bc39C+LthZzxYdLeeSH9QD0a7PXdFoOB6a/38bto2GYf3+8hSp0bU1qarz9zjv06NWLsKgowqKi6DdgANN/+QWAzK1b8fT1bfTr6ylTnNdobP/kL79s8Dqz58yh98kn4x8cTLtOnfjw44+PwK26vltuvRWz2czCBQu48IILyMjIIDk5mXPOPpvvp03jrDPPbHC8n58fkZGRJCcnM3r0aIKDg5k5c+YRq8fb29t5/ccee4y2bdsybdo0oG4kx223385dd99NeEQEp59+OgArV65k2Bln4B8QQFR0NFdedRX5+fnOa1ZUVHDV1VfjHxBATGwsL7744j6v++/pp4qLi7nxppuIio7G28eHTp078/333zNr1ixGjRpFSUmJc1TJ44/XBUVNTQ333XcfcfHx+Pn7c+KJJzJr1qwGrzPpgw9ITErC18+P884/n8KCgiP27ERERERERERERFqr3WtqBO41UqPSWkm1rRqoG6lhKNkGgD28PfaOl2Bvdx721GFEdD2DW64eSdGQN5jeYyL5/u3xNVRzn9tk5vuO5mzjXN74IxNHC4zWWL6jlFGfLOPyD5eyaFsJbiYDV/aM4e4ByfU3WYB5ypWYfx+LwW6BynywWf7zOl2duSkHx8TE8NQTT9AmJQWHw8FHn3zCiIsuYsHcuaSlpZG5aVOD49997z1eevllhpx2WoPtb7/5JqcNHuz8PjBgz3xiWzIzOXfECK4bNYpJ777L77NmcdMttxAVGcngQYOac48H5XA4qKr/B/Nf8zJ5YjiEdS4KCgr49ddfGffUU/j4+DR6zP6uY7fb+WbqVIqKio7qnIJeXl4NRmR8+OGH3HjDDfwxZw5Q13wYNHgwo0aO5MUXXqCqqooHHnyQiy++mN9++w2A0fffz5w5c/hmyhTCw8N5eMwYlvzzD527dNnvvZ1xxhmUlZfz4QcfkJKSwurVqzGZTJx00km89OKLPDZ2LGtWrwbA19cXgNtuv501q1fz6SefEB0dzdSpUxl2xhksW7qUtm3bsmDBAq677jr+N24c55xzDtOnT2fs4+qcirSkqMjIli5BRKRZlF8i4qqUXyLiqpRfx74iZ1Njz8fTu9fT8DB54G32xlCcCYAjMHGf89tH+dE+yg+IglOHYln7LeY5/yOodAevuE9gatE/zFn9Av3aJxzRuv/ZXsIva/Ox2uz77NtaWMXsjXX3YDYaOL9LJDf1SXBOO2XYNhe372/FUJGDw+SBtf9Y7F2uBBdcA7mlNampccawYQ2+f2LsWN55910WLFpEu3btiIyIaLD/u2nTOP+885wfJO8WGBCwz7G7TXz3XRITEnj26acBSE9PZ978+bzy2mtHralRZavmxM9PPCrXPpj5F8/H2+x10OM2btyIw+EgNS2twfbwiAiqq+saMjffdBPPPPOMc98DDz7II48+Sk1NDVarleDgYK4ZOfLI3gBgs9n47PPPWb58Oddde61ze9u2bXn22Wed348bN44uXbowbtw457Z3J04kITGR9evXEx0dzXvvvceHH37IwIEDAZj0/vvEJ+w/fH777TcWLlrEqpUrSU1NBSA5Odm53z8gAIPBQORe/zHbtm0bkyZNInPLFqKjowG45557mD59OpMmTWLcuHG88uqrDBkyhPvuuw+A1NRU5s2fz/Tp0w/nUYnIYXB3czv4QSIixyDll4i4KuWXiLgq5dexb/eaGnuP1Ciob2qEeoZgMBgwFG8FwBF4kMaEwYg941xq2wzFtOhNjHNfZLhpHjt+Ph9C34eIjodd76rsMl6etcXZtPi3MIoYZlpIiMmb+JQOnN3vJGIi6z//tlsxzXsR0/yXMeDAHtIW65lv4Ahvd9h1tVZNamrszWaz8fWUKVRUVNC7Z8999i/55x+WLV/O/zUyfdCdd9/NTbfcQlJSEteOGsVVV1zhHGXw14IFDOjfv8HxgwYN4r777z9gPTU1NdTU1Di/Lysra85tuZy/5s/HbrdzxRVXUPOvdSvuvecerrrqKrKzs7n//vu58aabiI+PP2Kv/cYbb/Duu+9SW1uLyWTizjvu4MYbb3Tu79atW4Pjly1fzqxZs/Dfa2TObps2baKqqora2lp67fV+Cg4OJu1fjZwG11y2jNjYWGdD41CsWLECm81GekZGg+01NTXORcXXrl3L8HPOabD/xN691dQQaUFbs7IIrf83KiLiSpRfIuKqlF8i4qqUX8e+xtbUKNx7kXBwNjVoZKRGo9y8sJ10F0XhvbFMuZ4Y+05sH5+FfcDjzR4RsT63nFdnZ/LL2rrp800GGNY+nJi9Fv1OLZrN0K3P4W0rqduwDfgIHN4hOIKSwVKJMXcVALaOl2Ad8CS4a73gw9HkpsbKlSvpN3Ag1dXV+Pr6Mvmzz8j414fDULceQXpaGif27t1g+6NjxnBqv354e3vz24wZ3HHXXVSUl3PLzTcDkJObS3h4eINzIsLDKS0tpaqqCi+vxkc1PDd+POPqR3fsbemKFfj4+NC5QwfWb9xIVXU1vj4+mNzcqKquxu5w4GY288eIP7BY6v4xeXl6UlNbi91ux2g04uHuTlX9aAg3NzcMQG39sZ6enlhqa7HZ7RgNBjw8Pamqqqo71mzGYDQ6p2Ty9PDAYrFgs9sxGAx4enriqHVQaanCbDZjMhqdjQlPDw8sVis2mw0D0KZNGwwGAytXruSMYcMwmUzU1NYSGRWFh7s7Hp6eWK1WKquq8PbywuFw4B8QQFx8PEnJyUz64AN69+5N+/bt6dixI1arFQ8PDyoqKqiorMRgMGAymXAzm9mVkwPUTdVksViwWOs6p15eXlRXV+NwOLA7HFxyySXcfffdeHl5ER8Xh8FgoLq+seQAPDw8qKyqcj7D0tJSTj/9dJ6u/3va/bw9PTwIDglh48aNdec6HFTu9QwdDofz3jw9PXE4HNRaLFRVV+NZf6+VVVWNPm9rfe1V1dV4eXpSWVVFYVERJpOJv+bPx2avGyrm7u6OzWbDy8vL+fdnqX9Ns8mEyWRy/p3bbDZsNhtWmw0A7/pzHOB8hrufg4e7OxarlVqLhVVr19K1UydWrVlDTW0tgf7+REVGsmZ93YJBifHx1NTUkF3//Lt07Mi6DRuoqq7G38+PuJgYVq1dC0BcbCx2m40d2dkAdGzfnk1btlBZWYmPjw/JCQmsqJ9yKyY6GqPBQNaOHQC0z8hgW1YWZeXleHl6ktqmjXMBrajISNzd3NialQVARloaO7OzKSktxcPDg3ZpafyzfLnz36W3lxdbttb9ByatbVty8/IoKi7Gzc2NTu3bs2TZMhwOB2Ghofj7+bFpyxYA2qakUFhUREFhISaTiS4dO7K0vtkUEhxMcFAQG+qns0tJSqK0rIy8/HwMBgPdOndm+apVWCwWggIDCQ8LY92GDQAkJSRQWVVFTm4uAF07dWL1unXU1NQQ4O9PdFQUa9atAyAhLo5ai4XsXbsAGmSEn68v8XFxrFqzpu55x8RgdzjYsXNn3fNu147NW7dSUVGBt7c3KUlJrFhV9x+nmKgojCYTWdu31z3v9HSyduygtKwML09P0tq2ZemKFXXPOyICDw8PMrfVzRGZkZpK9q5dFJeW4uHuTvuMDJYsW1b3vMPC8PHxYXNmZt3zbtOGvPx8CouLMZvNdO7QgX+WLcPucBAaEkKgvz8b6593m+RkiouLyS8sxGg00rVTJ5atWIHVZiM4KIjQkBDW1//7S05MpLy8nNz6tW66d+nCilWrqLVYnKPs1u71nq2urmZX/fPu0rEja9evp7qmBn8/P2JjYlhd/56Nj43FarWys/55d+rQgY2bNlFZVYWvjw+J8fGsrH/esfUjqLbXP+8OGRlkbttGSWkpa9ato01KCsvr37PRkZGYzWa21T/vdunpbK9/3p4eHqSnpjqfd2R4OJ6ens7nnZ6ayq6cHIpLSnB3c6Nj+/YsXroUgPDQUHx9fZ3PO7VNG/ILCigsKsJsMtG5Y0f+Wb4cu91OaHAwgYGBbNy8ue55JyVRXFpKfkEBRoOBrp07s2zlyroRc4GBhIWGsm6v511RUUFOXt0CZt06d1ZGoIxQRjQvI8orKvD28jomM8JitTrPVUYoI5QRyghX+jmipLSUWotFGYEyQhmhjHC1nyNKSktZvHSpMuIYzohdRXWftRbl7mTx0nySExPZuKvu2RtrTOBw4Cise+9vLTcRXFl56BkR25VnI19gyM5XGMwSTL89SP6KH9mUcTvtu/ZqkBEegRF8+uca7A4IDPAHoLikFIA8mzfT1xbgAAzAGe3DGBBRTaRPLdGRwbg5ajHPfJSInXVrTlf7J1Fj8sOrcgfuNQUYKuu+AOxuPmxIv5WCyH6kW2HXji3KiEYyYve9HIyhury8SSum1NbWkpWVRUlpKVOmTmXSpEn8+vPPDRobVVVVJLZpw4P338+dt99+wOs9/uSTfPjxx2yq/4fdoUsXrrz8ckbfe6/zmJ+nT2f4+edTlJe336ZGYyM1UtLSyN25E39//32O3Z6dTWJiIp5HcY2JI23o6aezevVq1qxevc+6GgMGDKBzly68VD8yJjklhTtuv5077rjDecyNN93Eruxspk6dCsCqVavo1LkzixYubDCqYubMmQw+7TS2bd1KTExMo7X8+/UOZf+YMWOY8s03LF+2DLN5335aeXk5oWFhfPTRR1wwYgQARUVFxCckcO211zZ6b7Nnz2bQ4MENpp/a26effcZNN91ESXGxc9v69evJaNeOWb//zimnnNJo/ZddfjklJSV8X7/wOcCll13Gzz//3OQFw6urq8nMzCQ2KgoPD48mnSsie+xu2oqIuBrll4i4KuWXiLgq5Vedals1OyuySfCLx2QwtXQ5DZzz9iLW5lTwziUd6dumblTNW6ve4Z0173Ju0nAeTh+Fx+udcWCg9q7NYG7aZ2o5pTUMfG0+V/IDD7t/gdFhxRGYSO2FkyEgFqgbhXHFh0udU2Htz5CMMG7rm0jb8D2fxxqy/8H8/a0Yi7fgwICt583Y+twHJve6A2rLMRRtxlC4GUNlPrY2QyAgrkn30BqVlpYSHh3d6Gf6e2vySA13d3dSUlIA6Na1K4sXL+a1119nwquvOo+ZMnUqlZWVXHbJJQe9Xs8TTuDpZ5+lpqYGDw8PIsLDya3vsu2Wk5uLv7//fhsaUDcq4Hj/wHjCa69xSt++9OzVi0cffZROHTtiNBpZ9PffrF23bp/pnv7t9ttuo1Pnzvz999/06NGD9u3bM3jwYK697jqef+45kpOTWbduHXffcw8XXnjhfhsazXXzzTcz8d13ufSyy7jv3nsJDg5m48aNfDF5Mu+8/Ta+vr6MHDmS+++/n5DgYMLDwxnzyCMYjcb9XrNfv370PeUULrjwQsY//zxt2rRh7dq1GAwGhg4dSmJCAuXl5cyYMYPOnTvj7e1Namoql156KVdfcw3PP/88Xbt0IS8vj5kzZ9KxY0fOOOMMbrv1Vk7p25cXXniBs88+m19++UVTT4m0sJ3Z2bTZa80cERFXofwSEVel/BIRV6X8ArvDzl1/3suivL8J8giiT+RJnBLdh94RvfA2t/zUR0X1008FNTL9VIhnsHORcPyimtzQAIjw9+D8LtG8u/gMLCE9eLz2BQzFmbhPvpDaS75hU7UvV3+8jOIqK8kh3mRE+u5zDV8PExd3i6ZdlN+ejXYrpr9exTTvRQwOGw6/aCzDXsERf1LDk919cUR0whHRqcm1y8E1e02N3ex2+z5rOUz64APOHDaMsLCwg56/bPlygoKCnA2J3r168fO/PjyeMXNmg3UWWquUlBQW//03Tz/zDA8//DDbt2+vG4KXkcE9d9/NTTfddMDz27Vrx8CBA3ls7Fh++P57AD7/7DPGPv44N918Mzt37iQ2Npbh55zDmDFjjnj90dHR/DFnDg88+CBDTz+dmpoaEhISGHLaac7GxXPPPkt5eTnnDB+On58fd991F6UlJQe87pdffsl9o0dz2eWXU1FRQZs2bfhf/WLkJ510EjfccAOXXHopBQUFPPrIIzz22GO89+67jBs3jvvuu48dO3YQGhpKr169OOOMMwDo3bs3b731Fo8//jiPjR3LwIEDefihh3hqr0XOReS/VVJa2tIliIg0i/JLRFyV8ktEXJXyC6Zu+Y5FeX8DUFRTxLStPzBt6w+4Gd3oEdadU2P6cXbimbgZW2ZR9cYWCi+s3rOmhqG4bmosx6Gup9GI606K46t/svlwewTnXvwJXX6/oq5Z8tkF3FH+EAUVnmRE+DLpis4N6miUw4Fxy0xMs5/CmF8345At/Rysg58Gz8Bm1yjN06Tpp8Y89hhDBg8mLi6O8rIyPv/yS1548UWmffstgwYMAOoWfO7QpQvfTpnCaYMHNzj/hx9/JCc3l14nnICnpyczZs7kgYcf5s7bb+fR+g/Rt2Rm0r1nT268/nquuuIKZs2ezd333cfUr79m8KBBh3xjBxqq4qrTTx0Ju9eWkP+Opp8SOTJWrllDh0bWcBIROdYpv0TEVSm/RMRVtfb8yq/KZ8QvF1NuKef2jreSEZTOnJ1/8kf2n2yv2O48rltoV5478RkCPQL+0/qqLDa6PPMHAItH98HXo+737kf+fh3LC1bwbO//cdrWfzDPe6FuYe2hLzT7tR78bi1Tlu2if9sQ3hwagOnT4ZgrdrHCnsgY/3G8edXJBHu7H/AahpzlmGc9hXHbnwA4PAOxDngSe7vzmrX4uOzfUZl+Ki8vj1HXX8+uXbsI8PenQ4cODRoaAJM++oiYmBgGDRy4z/lubm689fbbjH7gARwOBynJyTz79NOMuuYa5zFJiYl889VXjH7gAV57/XViYmJ4Y8KEJjU0ZP/U0BARV9UuLa2lSxARaRbll4i4KuWXiLiq1p5fzy19gXJLOe2C2nFZ6iWYDCZOCO/B3Z3vILMsk9k7/+D9tZNYkv8PV88cxUsnP0+Sf9J/Vl9x/dRTZqMBH/c9a30UVhcBu6efqlsI/nBGagBcf3I8U5fv4vcNBfzeLYqPrA/xsmMMHY2ZTPZ9Ccy9gP00NUq2Y/7jGUxrptTVYvLA1m0ktt63aXRGC2vyQuGuQiM1GqeFkv57GqkhcmQsXrqU7l26tHQZIiJNpvwSEVel/BIRV9Wa82vWzjncO280JoOJjwZOIjWwbaPHbSrZzN3z7mVHxU58zD4803scJ0b2/k9qXLOrjOHvLCbUx425d5/s3N536gAqrZVMGTKZlO9uxbjzbyxnvYk9/ezDer17pqzm+1V71nDuH5DNu47HMdaWYk84Bct5H4DZE2orMOxahnHnYgw7/8aYOQeDrQYAW8Z5WE95wLnIuBwdR22hcBERERERERERERE5tpRbKnjun+cBuCL1sv02NABSApKZNOBd7pv3AEsLlnHHn3dzd5c7uSjlAgxHeUqlxtbTqLJWUWmtBCDYM+SIjdQAuKFPvLOpERPgwaNXnYu1IhW3yRdj3PoHbp+dB3YLhry1GBy2Bufa4/tgPXWMFvw+xhhbugD5b5nN6mOJiGuKCA9v6RJERJpF+SUirkr5JSKuqrXm14SVb5BblUesTyzXtht50OODPIJ4ve+rnJVwBnbsjF/6Is/+8zxWu/Wo1llUP/1UoPeepkZB/SLhHkYPfOwODJV5ADgC4w/79VLDfbnupDi6xPjzwRVdiA7wxBHdHct5H+Awe2LctRRj7ioMDhsOv2hsaWdh7T+W2it+wnLhF2poHIP0CXcrYzSqjyUirklT54mIq1J+iYirUn6JiKtqjfm1vGAFX236GoCHut2Pp+nQptx3N7nzaI8xJPkn8eqKCXy1eQpLC5bxcLcH6RjS4ajUWlxV19QI2mukRmFNXVMj2DMIY2kWULcg95Fau+LegSn7bHPEn4Tlgs8wbp6JI6Ij9uju4Bd1RF5Pjq7W+Ql3/RAqh+O4XE7kgGpra1u6hFbH+T47ykP3RI53W7ZubekSRESaRfklIq5K+SUirqq15ZfFbuGpxU/jwMFZCWfQM+KEJp1vMBi4Mu1yxp/0LIHugWws2cTI36/j2X+ep9xSfsTrbWykRmH9SI0QzxAMxZkAOAITjvhr/5sjthe2vg9iTztTDQ0X0ipHapjNZgwGAwUFBYSEhBz1eeKOJTU1NRhb0f22NIfDQUFBAQaDQVN/iYiIiIiIiIjIEff26olsLt1MkEcQd3S6vdnX6Rfdl85DOvF/y1/h+60/8uWmr/l9x2zu63I3A2L6H7HPUHeP1Aj02vNZWcHukRoewXutp3H0mxrimlrlp6wmo5HI8HB25eZSXn7ku43HMrvDoabGf8xgMBAZHo5JU3+JHJa0tvtf4ExE5Fim/BIRV6X8EhFX1Vryy2q3Mn7pi3y1eQoA93S+i0CPgMO6ZqBHIGNPeJQzEobx9JJn2Vaexf1/PcQpUX14tMfDBHkEHXbdjS0UXlBdAECIZzCGwiO3SLgcn1plUwPq5tZLiIvDarVCK5qGKmvHDmKjo1u6jNajfoSGGhoihy83Lw9fH5+WLkNEpMmUXyLiqpRfIuKqWkN+FdeU8MBfD/F33mIMGLilw00MiRt8xK5/QngPPhv8Me+tmcQH6z7ij+w/GbvoSf7v5BcOe8SGc6RGI9NP1Y3UWA5opIbsX6ttakDdiA2Tu3tLl/GfKiktpU1yckuXISLSZEXFxS1dgohIsyi/RMRVKb9ExFUd7/m1uXQLd829lx0VO/A2e3N/p0eIcut2xF/Hw+TBTR1uoH9MP66eeS1zd81jTvYf9Ivue1jXLd69psbeIzWcC4XvNf1UgJoa0jj9+ngr4+bmdvCDRESOQcovEXFVyi8RcVXKLxFxVcdzfv2ZPZdrZo5iR8UOor2jmNDnTV78wYtLJv3D+RMXM3tDAY4jPCtNelA6V6ReBsD4pS9Sba0+rOs1tqaGc6Fw9wAo3Q5opIbsn5oarUyn9u1bugQRkWZRfomIq1J+iYirUn6JiKs6nvLL4XCwo2Inv2T9yjNLnuOuufdSYa2kW2hXPhz4Pt8tNrC9uK7JsGpXOdd/voJLJv3D/C1FR7SOkRlXE+EVQXblLiat+/CwrrV7TY2gvUZqFO4eqWGzY7BbcZg8wC/qsF5Hjl+tevqp1mjJsmV069y5pcsQEWky5ZeIuCrll4i4KuWXiLgqV84vu8PO0vxlLMr9m1VFq1lduIbi2uIGx5ybdA6ju97Lyp2VfLRwBwDjh2ewJqecTxbt4J/tpVz98TJ6JgRy7UlxDZoHu/l4mEgJPfR1R7zMXtzd+Q7u/+shPlz3MWcknE6cb1yT789qt1NaXd/UaGRNjdCaCgAcAXFg0O/jS+PU1GhljvTwMxGR/4ryS0RclfJLRFyV8ktEXJUr5ldOZS7fb/2B7zK/Z0fFjgb7zAYzqYFtaR/cjl4RvegXdQoWm4OHp63DAQzvFMFZHeu+ru4Vy9tzt/H5kp0s3FrMwq3F+33Np89O47zOhz4aYkBMf3pH9OKvnAU8v/RFXj75xSYvGl5SP0oDwL9++qlqazUV1koAQirqRpg4AhObdF1pXdTUaGXCQkNbugQRkWZRfomIq1J+iYirUn6JiKtylfyqtdUyJ/sPvtsyjb9yFmLHDoCP2ZtTovrQMaQj7YPbkRrQFneTe4Nz3/wzk035lYT4uPHA4DbO7eF+HowZ2paRJ8bx5p9bmbu5aJ8mT63NQV55Lf+bvpGTk4OJ8PM4pHoNBgP3dbmHi365lHm75jM7+w9ObeKi4bsXCff3NGM2GimrLeOnbdMBcDe641e6E9B6GnJgamq0Mv5+fi1dgohIsyi/RMRVKb9ExFUpv0TEVblCfhXXFHPN79eSVb7dua1baFfOTjqLgTH98TJ77ffctTnlvDV3GwCPDG3bYBqn3aIDPHnijLSGGy1VGDNnY1j3PVvWL+epqvN5/MdAJlzY4ZBHXCT4xXNF6mW8v+4DXlj6Ir3De+Jp9jykcwGKqixgrMYraCN3zZ3KXzkLsNgtzmsbS+ruCzU15AA0MVkrs2nLlpYuQUSkWZRfIuKqlF8i4qqUXyLiqo71/HI4HDz+95NklW8nyCOIa9Kv4puhX/L2qW9wZsKwAzY0rHY7D09bh9XuYFBaKEMzwg78YpZKjOt+wDztJtwndMJt6kjMa6bQ1raRD9yfpfvmCUxftbNJ9Td30fAVBSt5de0T+LZ9isrAj/kj+08sdgvJ/knc0O46Xu7zIobiTEAjNeTANFJDRERERERERERE5D/yxaYv+SN7Lu5Gdyac8gqpgW0P+dwPF+xgZXYZfh4mHj297QFHWJgWTMA0/0UMlirnNodfNLbUMzFYKjEt/5ibzd+x9Kd1lIZPwj/80BoJey8a/sG6j+gTdTLtg9rtt5al+Ut5Z/V7LMhdCNSt/+3hiODKdmcyKHYgKQHJ9cU5MBRvrfuj1tSQA1BTo5Vpm5LS0iWIiDSL8ktEXJXyS0RclfJLRFzVsZxf64s38PLyVwG4o9NtTWpobCus4uVZdaNQ7h+ccsC1MIxLP8I8ZxwAjoB4bKlnYE87E0dkF6hvPtTG9cH2w910YR0VH52Gcfhr2FMGH1Itey8afvXMUUR4hdMz/AR6RfTkhPAeBHsEszhvCRPXvMffeYsBMBlMtPE8hSWrOnNq287c0L5dw4tWFWKwVODAgCMg7pCfi7Q+amq0MoVFRS4xr6CIyL8pv0TEVSm/RMRVKb9ExFUdq/lVZa3ioQVjsNgtnBLVhwtTRuxzzM6Sah6atpZlO8r22Wex2bHYHPRKDGREl6j9vo5x06+Yf3sQAOuJd2E7+V5nI6PBce3OZq0hCdN3N9KJLTDlKqw9bsDW90H418Lk/2YwGBjT/SH+t+QZFuX+TU5VLtO2/sC0rT8AEOEVTk5VLgBmg5mzEs/k6vQr+eyvKv6uyWp0HZDdU0/hFwlNWKdDWh+tqdHKFBQWtnQJIiLNovwSEVel/BIRV6X8EhFXdazm1wvLXiKzbCthnmE81mPMPtM1/bGpkHPf+Zv5W4qprLXt82WxOfDzMPHUGWn7nerJkL0U87QbMTjs2DpctN+Gxm7tMjryTae3ec86FADz32/h9tl5UJJ10PuJ9I7glT4v8fvZv/LaKS9zZerlpAWmApBTlYub0Y0LUkYw9fSveLj7A8T4RFNcZQXYT1NDU0/JodFIjVbGZDK1dAkiIs2i/BIRV6X8EhFXpfwSEVd1LObXr1m/MXXLdxgw8GTPsQR6BDr32R0OXp+zldfmZOIA2kf58sQZafh77PvRbbCPG76NbAegKBO3KVdgsFRhTzwV62nPHbChsdttA9M4a8N1/FWWwcte7+CVvQT3D07DOvRF7KmnH/R8T7MnvSN60TuiFwDFNcWsKVpLm4AUwrwaLmReVGkBINBr/yM1HAHxB31Nad3U1GhlunTs2NIliIg0i/JLRFyV8ktEXJXyS0Rc1bGUX9UWG/d8N5e/7ePAAGfHXUK3sG7O/UWVFu6buoY/NtWNLrmoWxQPD2mDh7mJjZnKAty+vhxDZQH28A5YznkbTPs2Dhrj427miTPSGPVpDYMrE/k+ciKBRStw+3YU1m4jsfV7BMz7X7/j3wI9Ajkxsnej+4qrDtTU0EgNOTSafqqVWbpiRUuXICLSLMovEXFVyi8RcVXKLxFxVcdSfk2cv5F5Fa9hM1Rhq4zn41/ac/KL87jz61VM+iuL8yf+zR+bCvE0G3n27HSeOCOt6Q0NSxVu31yNsWgzDv8YLOd/BO6+TbpEn5RgzuscyXZHGD2z72NRxCUAmJe8h9un50BRZpOul1VURa3Vvs/24vqRGgdaU8MRmNCk15LWR02NVsZms7V0CSIizaL8EhFXpfwSEVel/BIRV3Ws5Nea/Czez3oIk/c2zHjRwXwDXm5uFFZa+Gl1Hk//uokdJTUkBHvxxchuDO8c2bQXqCzAuORd3D45C+POxTg8ArCM+BR8I5pV7+PDUrmkezS1mLlg61mMDx6L3SMQY85y3D88DUPm7EO6zrQVOQx+bQFnvbWI9bnlDfbtGamx7wRChuJtgEZqyMFp+qlWJiQ4uKVLEBFpFuWXiLgq5ZeIuCrll4i4qmMhv1YWrOSG2fdg8CjBaPflzQEv0CW0M7U2O8t3lPJXZjGLt5UQH+zFvQOS8fM8xI9pLVUYN/2CcdXXGLf8jsFR18BxuHlhOfd9HCFtm12zu9nI2GGpdI3159Ef1vPazlT+8HuWj8Pewi9vCW5TR2G5eAqOyE77vUZ+eS1PTd+AA8gsrOLC95bwxBlpnN0xAofD4VwofJ/ppyyVGCpy6u5FIzXkINTUaGWCg4JaugQRkWZRfomIq1J+iYirUn6JiKtq6fz6edsvPL7oSSwOC7bqSJ444Rm6hKYD4G4y0iM+kB7xgYd2sZoyDDnLMWYvxbBrKcbM2Rhq94x+sEd2xt7ufGzpw8En9IjUf06nSNIjfLn9q1UsK4ReFXfxW8QrRBctwu3rK6i9bBoENr6Y91PTN1BcZSU9wocQH3fmbi7ivqlr+Gd7Cbf1S8RqdwAQ+K/pp5yjNDwCwEv//ZEDU1OjldmwaRPdu3Rp6TJERJpM+SUirkr5JSKuSvklIq6qpfLL7rDz1qp3eHft+wBYyzLo6X0zw9LSm3Qd44afMK7/CcOupRgKN2HA0WC/wz8WW7vzsbc777BGZhxIWoQvX1/bnQe/W8sva/M5LfsGfg0sIqpyI25fXYrl0m/BO6TBOb+ty+en1XmYDPC/s9JJj/BlwpxMJvyxlU//3sn8LUUAeJqNeLk1XDdkz3oajTdLRPampoaIiIiIiIiIiIjIYbA5bDy84FF+2z4DgJr8ftjyh3D/je2acJFazDMfw7T0gwabHf4x2CO74IjsjD2mJ46YHmA4+ksl+3qYeWVEe977K4vnftvMOcV38YvfEwQWbcZtytVYLvoC3LwBKK228PhP6wEYdWI87aP8ALj91CQ6x/hz39Q1bCmoAvYdpQFgKN5ad69aT0MOgZoarUxKUlJLlyAi0izKLxFxVcovEXFVyi8RcVUtkV+zd87ht+0zMBvM+FdczNa8DlzaI5qUUJ9Du0D5Lty+va5uwW8M2LqNxJF0KvaIzkdsWqnmMBgMjDoxHh93M4/9uJ4R5ffwvfeTeGYvxvz9LVjPmQhGE8//tpncsloSg724pW/DNTH6tQ1hynXduf2rVazKLifSz2Pf13GO1NB6GnJwTWrpvf3OO/To1YuwqCjCoqLoN2AA03/5xbl/8NChePr6Nvi69fbbG1xjW1YWw88/n6CwMOISE3nw4YexWq0Njpk9Zw69Tz4Z/+Bg2nXqxIcff3wYtyh7Ky0ra+kSRESaRfklIq5K+SUirkr5JSKuqiXy6/cdswDoEXgGW7d2wMfdxK19Ew/pXMP2Bbh/OLSuoeERgPX8D7ENfBJ78sAWbWjs7eLu0Tw8pA0bHbFcUXkXVoM7po3TMc8Yw/zNhUz+JxuAcWel4fmvqaUAYgO9+Ozqrjx6elvGDtt3yqw9IzXU1JCDa1JTIyYmhqeeeIL5f/zBvDlz6Ne3LyMuuojVq1c7jxl59dVkbtrk/PrfU08599lsNs49/3xqa2uZNWMGE99+m48+/pjH9zpmS2Ym544YQb++fVk4bx633XwzN91yC7/+9tsRuF3Jy89v6RJERJpF+SUirkr5JSKuSvklIq7qv84vi93CH9lzAVi2oW5NiBtOjifEx/3AJzocGJe8j9sXF2CoyMUemkHtFT/WNTOOQVf2jOW+gckscqRza83NODBgWvoB2759DHBwSffoAy6A7mE2cVmPGDIi/fbdWVK/ULimn5JD0KTpp84YNqzB90+MHcs7777LgkWLaNeubn44b29vIiMiGj3/txkzWLN2LT9Om0ZERASdO3XisUce4eFHH+WRhx7C3d2die++S2JCAs8+/TQA6enpzJs/n1dee43BgwY15x5lLwaDoaVLEBFpFuWXiLgq5ZeIuCrll4i4qv86v/7OXUy5pRwvYwC5eVFE+ntwVa/YA5/ksGOefi+mFZ8DYEs/G+uQF8Hd+z+ouPmuPSmeWpudl2fBWMuVPO72AVdav8bXu4x+/d9q3kXtNgwlWYBGasihafaKMjabjclffklFRQW9e/Z0bv/8iy+IiY+n2wknMOaxx6isrHTu+2vBAjq0b0/EXk2PQYMGUVpayuo1a5zHDOjfv8FrDRo0iAULFx6wnpqaGkpLS51fZRom26hunTu3dAkiIs2i/BIRV6X8EhFXpfwSEVf1X+fXzPqppyqL0wEjd/VPanQKpr2ZFk/EtOJzHAYT1lMfw3rmG8d8Q2O3m09J5KY+CXxgG8LDlpHYHQbOs/9C4C+3grWmaRerKsQ0/yUMdgsOoxv4Rh2douW40uSFwleuXEm/gQOprq7G19eXyZ99RkZGBgAXXXghCfHxREVGsmLVKsY88ggb1q/ni88+AyAnJ4fw8PAG14uo/z4nJ6fuf3NzGz2mtLSUqqoqvLy8Gq3rufHjGVc/umNvS1eswMfHh84dOrB+40aqqqvx8/UlPi6OVfWNlLiYGOwOBzt27gSgY7t2bN66lYqKCry9vUlJSmLFqlUAxERFYTSZyNq+HYD26elk7dhBaVkZXp6epLVty9IVKwCIiojAw8ODzG11w6cyUlPJ3rWL4tJSPNzdaZ+RwZJly+ruMSwMHx8fNmdmApDWpg15+fkUFhdjNpvp3KED/yxbht3hIDQkhEB/fzZu2QJAm+RkiouLyS8sxGg00rVTJ5atWIHVZiM4KIjQkBDWb9wIgMPhICIsjNz6YXjdu3RhxapV1FosBAYEEBkRwdr16wFIjI+nurqaXbm5AHTp2JG169dTXVODv58fsTExrF67FoD42FisVis7d+0CoFOHDmzctInKqip8fXxIjI9nZf3zjo2OBmB7/fPukJFB5rZtlFdU4O3lRZuUFJavXAlAdGQkZrOZbfXPu116Otvrn7enhwfpqanO5x0ZHo6np6fzeaenprIrJ4fikhLc3dzo2L49i5cuBSA8NBRfX1/n805t04b8ggIKi4owm0x07tiRf5Yvx263ExocTGBgIBs3b6573klJFJeWkl9QgNFgoGvnzixbuRKr1UpwYCBhoaGsq3/eyYmJVFRUkJOXB9T9R3XVmjXU1NYS6O9PVGQka/Z63jU1NWTX/1vo0rEj6zZsoKq6Gn8/P+JiYlhV/7zjYmOx22zsyK6br7Bj+/Zs2rKFyspKfHx8SE5IYEX9tHAx0dEYDQayduyoe89mZLAtK4uy8nK8PD1JbdOGZfXPOyoyEnc3N7Zm1XXHM9LS2JmdTUlpKR4eHrRLS+Of5cvr3rPh4Xh7ebFla92ch2lt25Kbl0dRcTFubm50at+eJcuW4XA4CAsNxd/Pj03179m2KSkUFhVRUFiIyWSiS8eOLF2xApvNRkhwMMFBQWzYtAmoW9yrtKyMvPx8DAYD3Tp3ZvmqVVgsFoICAwkPC2Pdhg0AJCUkUFlVRU79e7Zrp06sXreOmpoaAvz9iY6KYs26dQAkxMVRa7GQXf+eVUbsec+Wl5cfkxmxc9cuIsPDlRHKCGWEMgJwrZ8j8goL2f27gsoIZYQyQhnhSj9HlJaVcXLv3soIlBHKCGWEq/0cMeuPP/Dz8zvqGbF2/Xr+yanl29KZYISq4na0CTRxZvswVq5Zs9+MIGclUbPqpuOv7f8Eq31OpGrZMpfKiD6Bxexo68UnGwYRFRLEzWUvY1r/A7byfP5Juw+b2fuAGRFpKiVq27e4r52CyV7XCKkK78bS5SuUEa04I3bfy8EYqsvLHYd0ZL3a2lqysrIoKS1lytSpTJo0iV9//tnZ2Njb77NmcfqZZ7Jq+XJSkpO5+dZb2ZaVxffffus8prKykuDwcL6dMoUhp51Ghy5duPLyyxl9773OY36ePp3h559PUV7efpsaNTU11NTs6QSWlZWRkpZG7s6d+Pv7N+UWj2uLly6le5cuLV2GiEiTKb9ExFUpv0TEVSm/RMRVHe38cjgczN9SxMuzMlleuAKfxDdw2Dy5PPwdrjspCV+PA/weuaUSt49Ox1iwAVubIViHvwcuPN3frtJqIvw8MG6bi9vUkRhqy7GHd8Ay4hPwCdtzoMMO5bsw5q7GuPRDTJv3rJ9sD++ArccN2NPPAtNB1iGR41ppaSnh0dEH/Uy/ySM13N3dSUlJAaBb164sXryY115/nQmvvrrPsT1POAGAzZs3k5KcTEREBH8vXtzgmN2/5bB7SqqI8HBy67ftfYy/v/9+GxoAHh4eeHh4NPV2Wp2gwMCWLkFEpFmUXyLiqpRfIuKqlF8i4qqOZn6VVlu4/atVzN9SDIB3ZN1IiQGxfbjr5LYHPd8860mMBRtw+ERgHTLepRsaAJH+ngA4Evpgufgr3L66DGPuStw+HY49dRiGoi11X8VbMFirnec5MGBvMxhbjxtwxPZ2+ecg/60mNzX+zW63U1Nb2+i+ZfXDwiIjIwHo3asXzz7/PLl7TTE1Y+ZM/P39yUhPdx7z8/TpDa4zY+ZMeu21boc0X3hY2MEPEhE5Bim/RMRVKb9ExFUpv0TEVR3N/Hr/r+3M31KMm8nAxd2iWGDfRHYlDEkYcNBzjRunY1r6AQCWYf8H3iFHrc6W4IjohOXSb3H78hKMxVswLpzQcL/RjCMgHkdiX2zdr8URlNxClYqra1JTY8xjjzFk8GDi4uIoLyvj8y+/ZM4ffzDt22/ZtHkzX0yezNAhQwgODmblypXc98AD9Dn5ZDp26ADAoIEDyUhPZ+R11/G/p54iJyeHx594ghuuv945yuLaUaN44623eGjMGK664gpmzZ7N11OmMPXrr4/83bdC6zZs0PBhEXFJyi8RcVXKLxFxVcovEXFVRyu/aq12Pl9ct97Cc+dkkBpbytRfd+BudOekyN4HPrk8B/PP9wBg7XEDjsR+R7y+Y4EjKJnaS7/DtPB1cNggMBFHUDL2oCTwjwWTW0uXKMeBJjU18vLyGHX99ezatYsAf386dOjAtG+/ZdCAAWRt387M33/ntddfp6KigtjYWM495xweGD3aeb7JZGLKV19x+5130m/AAHy8vbn8sst4bMwY5zFJiYl889VXjH7gAV57/XViYmJ4Y8IEBg8adOTuWkRERERERERERKQJfliVS2GlhUh/DwanhzJp3TQAekX0xNvsvf8THXbcfrwDQ1Uh9vD22E554D+quIX4RmAb8HhLVyHHsSY1Nd56/fX97ouLjeW3f00b1ZiE+Hi+nTLlgMf069uXBfPmNaU0OURJCQktXYKISLMov0TEVSm/RMRVKb9ExFUdjfxyOBx8uHA7AJf1iMbNZOT3nbMB6B9z6gHPNS2eiHHrHBxmT6xnvg5mrQsscjiMLV2A/Lcqq6paugQRkWZRfomIq1J+iYirUn6JiKs6Gvm1OKuE1bvK8TAbuaBrNDsqdrK+eD1GjPSN6rP/E4syMc35HwDW/mNxhBx8MXEROTA1NVqZnNzcli5BRKRZlF8i4qqUXyLiqpRfIuKqjkZ+fbRwBwBnd4wgyNuN33fMAqBrWBcCPQL3e555/ksYbLXYE/pi73zFEa9LpDVSU0NERERERERERERkP7JLqvl1bR4AV5wQA8CsHfVTT0Xvf8FvQ+FGjKu/BsB6ygNgMBzlSkVaBzU1WpmunTq1dAkiIs2i/BIRV6X8EhFXpfwSEVd1pPPr0793YnNAr8RA0iJ8KaguYFnBcgBOjdl/U8M070UMDju2NqfhiOpyRGsSac3U1GhlVq9b19IliIg0i/JLRFyV8ktEXJXyS0Rc1ZHMryqLjcn/7ATgyvpRGnN2/oEDBxlB6UR6RzZ6niF/HcY13wJgO+neI1aPiKip0erU1NS0dAkiIs2i/BIRV6X8EhFXpfwSEVd1JPPr+5U5FFdZiQn0pH9qKAC/76ybeurUA0w9ZZr7AgYc2FLPwBHR4YjVIyJqarQ6Af7+LV2CiEizKL9ExFUpv0TEVSm/RMRVHan8cjgcfLigboHwy3vEYDIaKLdUsCj3bwAGxJza6HmG3FWY1n+PAwO2k+45IrWIyB5qarQy0VFRLV2CiEizKL9ExFUpv0TEVSm/RMRVHan8WrC1mPV5FXi5GRnRtW6aqRnbZ2KxW0jwSyDJP6nR80xzxwNgTz8bR1j6EalFRPZQU6OVWaM5UUXERSm/RMRVKb9ExFUpv0TEVR2p/PpwwXYAhneKxN/TDYfDwScbPgXg7MQzGz3HsGs5po3TcRiM2E66+4jUISINqakhIiIiIiIiIiIispesoipmri8A4Ir6BcLn7prP5tIt+Ji9OT/53EbPc47SyDgXR0jb/6ZYkVZGTY1WJiEurqVLEBFpFuWXiLgq5ZeIuCrll4i4qiORX5/8vQMH0Cc5iJQwHwA+Wv8xAOcmDcfXzXefcww7F2Pa/BsOgwnbSXcddg0i0jg1NVqZWoulpUsQEWkW5ZeIuCrll4i4KuWXyPGhxlbT0iX85w43vypqrXz1TzYAV/aMBWB14RoW5y3BZDBxcduLGj3PvHuURvsROIKSD6sGEdk/NTVamexdu1q6BBGRZlF+iYirUn6JiKtSfom4jrJqK5/+vYOKWmuD7TN3/E6fb05l8savWqiylnG4+fXt8hzKamwkBntxSptgAD5a/wkAp8UNJtI7Yp9zDNlLMWbOxmE0Yz1RozREjiY1NURERERERERERFzY+JmbefynDYyfsdm5zeFw8Oaqd3DgYMaOmS1YnWuxOxx8tHAHAJefEIPRYGBHxU5mbK97hlekXtboeaYVn9Wdn3Y2BMb/N8WKtFJqarQynTt0aOkSRESaRfklIq5K+SUirkr5JeIabHYHv6zJA+C7FTlUWWwALMxdxObSuibH2qK12B32Fqvxv3Y4+TVvcxGbCyrxcTdxbudIAD7b8Dl27PSO6EVqYCOLf1uqMK79FgBbx4ub/doicmjU1Ghl1m/c2NIliIg0i/JLRFyV8ktEXJXyS8Q1/L2tmMLKujUkymtsTK9vcHy64XPnMRXWSrLKt7dIfS3hcPLrw4V1z+n8LpH4epgpqS1h6pbvgP2P0jBu+AlDTSmOgDgc8Sc1+7VF5NCoqdHKVFVXt3QJIiLNovwSEVel/BIRV6X8EnENv6zNB8DLre5jvq/+ySazbCtzd83DgIFI77rRBmuK1rZYjf+15uZXZkElszcWYqBu6imArzd9Q7WtmtTAVHqGn9DoeaaVXwBga38BGPRxq8jRpn9lrYyfr29LlyAi0izKLxFxVcovEXFVyi+RY5/d4eCXtXUjM+4fnILRAIu2lfDOyk8BOCWqD30i60YOrG1FTY3m5tfHi+rW0ji1bQgJwd7U2Gr4YuNkAK5IvRSDwbDvSaXbMWz9EwBb+wubV7CINImaGq1MfFxcS5cgItIsyi8RcVXKLxFxVcovkWPfsh2l5JbV4uNu4vzOUZySEgzGSn7b8TMAl7a9mIygDADWFLeepkZz8qu8xsrXy3YBcEXPulEaP237mYKaQiK8IhgcO6jR80yrvsKAA3vcSVogXOQ/Ym7pAuS/tWrNGrp36dLSZYiINJnyS0RclfJLRFyV8kvk2Ld76qn+bUNwNxsZ0SWKeYXfYKOGtgFt6R7WDX93fwDWFq3D7rBjPM6nR/o16zdeWvIKBjNY7VasDhtWuxWbw4YDB8EeQYR5hRHmGUa4VxihXqGEeYaycEsNNeZ84oMDiAwpJruiho/X1414uaTtRZiNjXyM6nBgWlk3ksPW4aL/8jZFWjU1NURERERERERERFyMw+Hgl/pFwU/LCAOgT5sAPJfNB6Cz3xkYDAaS/ZNwN7pTYa1ge/l24v2O39EEVdYqnl/6AoWWIrA0fkx25S6yK3c1us87AYqAi37ds83XzZdzk85p9HjD9gUYijNxuPtiTz3jMKsXkUOlpkYrExcT09IliIg0i/JLRFyV8ktEXJXyS+TYtmZXOduLq/E0G+umnQLm7poD5mLsVl82Z6ZCbzAbzbQNaMOqotWsKV53XDc1vtz0NYU1RUR6RvDcSc9gNprrvgwmzEYzDqCguoC8qry6r+p8cqvy2FCYzbq8QkymWiIDDFTZqqiyVmFz2Lg24xp83HwafT3Tys8BsKedBe7e/+GdirRuamq0MnaHo6VLEBFpFuWXiLgq5ZeIuCrll8ixbXr9AuGnpATj7W4C4LMNXwBgKerFnwWl5JTVEOHnQUZQel1To3ANQ+IGt1jNR1OltZIP130MwEXxF9EuOKPR42J8ovfZNvKTZVRmFjHyxDjuH5Ti3H7A6bpqKzCu+x7Q1FMi/zU1NVqZHTt3Ehke3tJliIg0mfJLRFyV8ktEXJXyS+TY9suauvU0dk89tbJgJcsLV+BmdCPJexDL82Hqsl3c0CeB9KB04PhaLHxdTjnTVuZgq++/rq3+juLaYnyMESxfHc8srwJ6xAfg67H/jz9Lqy3M2lDI3M1FGA1wWY+GDY8DrT9iXDcNg6USe1AyjpgTjsg9icihUVNDRERERERERETEhWzMq2BzQSVuRgP924YA8NnGugWrh8QNpqNbOsu3reOrpdlcf3I87YLqRi0cL4uF2+wObv9qFZmFVXUbjNX4pkzDYIb87X35rsTKdxtWYDJAx2h/eicG0jspiLQIH1buLOOvzGL+yixiza5y7PVNkYGpocQGeh1yDbsXCLd3uBAMhiN9iyJyAGpqtDId27Vr6RJERJpF+SUirkr5JSKuSvklcuz6pX7qqZOSg/DzNLOrche/bZ8BwCVtLybWO4xx0zeyraiahVuL6R5/fC0W/tPqXDILqwjwNDOiaxSrq6eysroSP2MUIzLOorjCyuLtpWwrqmbpjlKW7ijlzbnbGr1Wcog3JyUHcVu/xEMvoCgT4/a/cBiM2NqPODI3JSKHTE2NVmbz1q2kt23b0mWIiDSZ8ktEXJXyS0RclfJL5Nj1y5p8DG4FBEdt5PY/3uPvvCXYHDa6h3UjLTAVgDPahzP5n2y+WrqLXolBh7VYuN1h59ftM0j2S6Rt4JHLBYvdQkF1IQXVBeRX5+NudKdrWBc8TZ4HqMXBm39uBeDq3rFc2TuUs378GYD7e9zI0PhU1m7YwDPDe7OjuJoFW4v4a0sx8zOLyC2rJSbAg95JQfRODKJXYiARfh5Nrtu0qm6UhiOhL/jtu0aHiBxdamq0MhUVFS1dgohIsyi/RMRVKb9ExFUpv0SODQ6Hg4LqArZXbGd7xU4W71rNVp/Z+Abn8Vv+nuNifWK5u/Odzu9HdI1i8j/ZTF+TxyND2zgXC19btLbJi4V/uO5jXlv5Oh4mD97o+xqdQjo2617sDjtvrXqHWTvnkF+dT0ltyT7HeJo8OTGyN6dG96NP1EkEuAc02D9jXT4b8irx9TBx+QkxfLbhQ8osZST5JTI4bhCwJ79iAj05LzCK8zpH4XA4KK+x4ed5mB+H2m3OqadsHbVAuEhLaNK/4rffeYe3J05k67a64VrtMjJ46IEHGHLaaRQWFvLkuHH8NnMmWVlZhIaGcvaZZ/LYI48QELAnfDx9ffe57ofvv8+FF1zg/H72nDnc/+CDrF6zhtjYWB4YPZorL7+8ufcoe/H29m7pEkREmkX5JSKuSvklIq5K+SXSMvLLa3l6zi/8XfIdXj5FlNlyqbHVNDjG5AE4jHQP78LJkSfRJ+pkkvwSMey1tkOnaD9Sw3xYn1fBdytySA+tXyy8aP+LheeW1fDYj+vpnRjEVb1iAVhesII3Vr0FQI2thjv/vIeJ/d8i2T+pyff2f8te59ONHze8F4OJUM8QQjxDKKguIKcql993zOL3HbMwGUx0C+1K/5hTGZYwFB+zD2/8UTdK4/ITYjAYq/lkw2cAXNduFCaDCWg8vwwGwxFoaFgx/fEMhrKdODwCsLcZcnjXE5FmadK/5JiYGJ564gnapKTgcDj46JNPGHHRRSyYOxeHw0F2djbPjBtHeno627Zt47Y77yQ7O5vPPvmkwXXefvNNThu8pyMcuFfTY0tmJueOGMF1o0Yx6d13+X3WLG665RaiIiMZPGjQYd6upCQ1/T84IiLHAuWXiLgq5ZeIuCrll8h/q6jSwnvzs/ho2UJMsa9jcKulorZunwEjkd4RxPnGsGa7J7m58dxz0lBG9kzd7/UMBgMXdoviqekbeXvuNl67vG7aqLXF+18sfPyMzcxcX8DM9QVU1tq4rFcQDy14BJvDxsCYAeRW5bKicCW3/XEH7/Z/h0jviEO+vzeWfuFsaFTnnIGfPYOnhvagf5t4Zy0Oh4O1xeuYtWM2s7PnsLFkE4vy/mZR3t+8umIC3QIHsrowDW+3CK7qFcunGz6g3FJOsn8yg2IHOl/rqORXRR5u39+McdtcAGy9bwPz/qfJEpGjx1BdXu44nAtExcXxv6ee4pqrrtpn39dTpnDNtddSmJuL2VzXP/H09WXyZ59x9llnNXq9hx95hJ9+/pklixY5t11x1VUUl5QwberUQ66rtLSU8OhocnfuxN/fv2k3dRxbvHQp3bt0aekyRESaTPklIq5K+SUirkr5JfLfKKu2MmlBFu//tZ1KWzHeSa9hdCshwtyOvO0nU1oeiMMSSGq4P1f2jGHM9+sxAHPuPJHwg6wHUWO1cfrrC9lRUsPt/eL4JP8aau21TBkyeZ91NVZll3HexMV7bXHQqes3bKleSKxPLB8P+gCr3cq1s64ns2wryf5JvHPqm/tMD9WY8fN+4rMdT2Iw2HEvG0JIzZmsz6vAaIC7+idz3UlxDUaZ7La9fAezds7mu8xpbC7d4tweae7EXT0u5om/n6LCWskzvf/HoNgBzv1HOr8M2xfg9t2NGCpycLh5Yx0yHnvG8CN2fRGpc6if6e/bkj1ENpuNyV9+SUVFBb179mz0mJLSUvz9/JwNjd3uvPtuYuLj6dOvH5M+/BCHY09f5a8FCxjQv3+D4wcNGsSChQsPWE9NTQ2lpaXOr7KysmbemYiIiIiIiIiIyNHlcDj49O8dDHz1L16bs5UKSzVByZ9gdCsh3jeez4b9HzOvu4rbTuqOr4c763MrGPP9egC6xvkftKEB4GE2Maa3JwbsTJy/kyS/FADWFK/bp5Znft0EwFkdwrnj1ETcgv5iS/VCjJj5X68n8XXzIdAjgNdOeZlwrzA2l27hrrn3Um2t3u/r11ht3PHdDD7LegaDwU6wvRc/XPQwk0d1Y3inCOwOeGHmZm6ZvJLSass+58f6xnB56qV8MfhTbmn7P6xlGTgcBnZZl3P/Xw9RYa2kbUAbBsSceqiPvWkcDkwL38Dt8xEYKnKwh7TFcsVPamiItLAmTyS3cuVK+g0cSHV1Nb71oy4yMjL2OS4/P5+nn32Wkddc02D7o2PGcGq/fnh7e/PbjBnccdddVJSXc8vNNwOQk5tLeHh4g3MiwsMpLS2lqqoKLy+vRut6bvx4xj399D7bl65YgY+PD507dGD9xo1UVVfj5+tLfFwcq9asASAuJga7w8GOnTsB6NiuHZu3bqWiogJvb29SkpJYsWoVADFRURhNJrK2bwegfXo6WTt2UFpWhpenJ2lt27J0xQoAoiIi8PDwILN+DZKM1FSyd+2iuLQUD3d32mdksGTZsrp7DAvDx8eHzZmZAKS1aUNefj6FxcWYzWY6d+jAP8uWYXc4CA0JIdDfn41b6jrUbZKTKS4uJr+wEKPRSNdOnVi2YgVWm43goCBCQ0JYv3EjAIH+/mRt305uft1KUt27dGHFqlXUWiwEBgQQGRHB2vV1/4FMjI+nurqaXbm5AHTp2JG169dTXVODv58fsTExrF5bNw9jfGwsVquVnbt2AdCpQwc2btpEZVUVvj4+JMbHs7L+ecdGRwOwvf55d8jIIHPbNsorKvD28qJNSgrLV64EIDoyErPZzLb6590uPZ3t9c/b08OD9NRU5/OODA/H09PT+bzTU1PZlZNDcUkJ7m5udGzfnsVLlwIQHhqKr6+v83mntmlDfkEBhUVFmE0mOnfsyD/Ll2O32wkNDiYwMJCNmzfXPe+kJIpLS8kvKMBoMNC1c2eWrVyJ1WolODCQsNBQ1tU/7+TERCoqKsjJywOgW+fOrFqzhpraWgL9/YmKjGTNXs+7pqaG7Jwc5/Net2EDVdXV+Pv5ERcTw6r65x0XG4vdZmNHdnbde7Z9ezZt2UJlZSU+Pj4kJySwYvXquvdsdDRGg4GsHTvq3rMZGWzLyqKsvBwvT09S27RhWf3zjoqMxN3Nja1ZWXXv2bQ0dmZnU1JaioeHB+3S0vhn+fK692x4ON5eXmzZWjeXZVrbtuTm5VFUXIybmxud2rdnybJlOBwOwkJD8ffzY1P9e7ZtSgqFRUUUFBZiMpno0rEjS1eswGazERIcTHBQEBs21f0wlZKURGlZGXn5+RgMBrp17szyVauwWCwEBQYSHhbGug0bAEhKSKCyqoqc+vds106dWL1uHTU1NQT4+xMdFcWadXU/uCXExVFrsZBd/55VRux5z5aXlx+TGVFTU8OadeuUEcoIZYQyAnCtnyOCAgOd5yojlBHKCGWEK/0cUVNTQ63FooxAGdEaMsJq9KBjWgpr1tS9v492RqzeuIV3llUyf2fdB/nRvgbCk75jkzUTb6M31waPomhXMYGB0Nu/mA6n+jCvwIvPl+ZSbXXQNcgKcNCMcFvwCqdv+ohnAy9gdPG5FOUHgRusyF1BaEGY83nP2lDAwq3FuBnh9n4JrNr6J14R3+MAKncN5fs/SqlKWEpcbCzYDNwUehPP7xjP8oIV3DrjTq4Pvw5/X/8GGWHwDeXhGavI8X8Ro1sN/8/eXYdHcX0NHP/OatzdiBEhCQQNVlxaSkuF6kupu7u7/+pKaal7CxQKbYHiUFwSIO7u7mvz/rEhNCUhQpAk9/M8PMCO7J1hc5idM/ccd1UYr4XfSkZKApYWFrw0Jxhnavj6SCMbUsq5aPFe7orWMshe2W6M+P0fDY3l1zI7XIe7737+yltLs9zMDcHXk5Wd0yZGNOt07I+NbT9GVFRQU5yJVVMxIc5KipN3o2ksRqvRorG0oaquHllSYe/oDCWJaAt3AGAMv5hY3+tpzq3HsTZLxIgBFiPEdcTp+a5x9Fg60+3yUzqdjtzcXKprali+YgVfffUVf69Z0yaxUVNTw/kXXoijoyPLfvkFtVrd4f6ef/FFvvnuO9JbfrAjo6NZuGABjzz0UOs6a9au5aJLL6WytLTDpEZzczPNzceaJtXW1hIUGirKT/1HSVkZbi4uZ3oYgiAI3SbilyAIfZWIX4Ig9FUifgn9WUWDjj1ZVezKqmJXViWZ5Y1Eetry/bXRWKiVp/S900vruXtpPOllDagUEg9ND8Rkt55FCYtRSko+POc9RruNan/c9TpSSuuJGeTQbrmmf5MyN6FeugAJGYPKihF179HkkIDWcxmjXEfyyeSPADCYTFzwyT4yyhu4ebwvt0/y4JoN15FTl4uXagTJhy9DQuLVC8O4eJhH6/5jy2K5c+u9NJuaGeocxQiX4QTbB+GmHcSGIwp+2JcDXotQWubjpvXmx9lftFuq6nBBDfcujSe/uhm1QuKyEZ7cNnEQ7v+aibI/t5qrvzqIWiHx910xeNpbUK+vp7K5Ch8b7+P2eVz8kk0ojvyMMvYbpIp0JF3dCc/dv8lKDYapz2OKXgidnHNBEE5OV8tPdXumhkajISjIPFVtxPDh7N+/nw8//piPPvgAMCcTLrz44tZZHCdKaACMGT2aV19/nebmZrRaLe5ubpS0ZNmOKi4pwc7OrsOEBoBWq0Wr7Xza3UCXm5cnLkoFQeiTRPwSBKGvEvFLEIS+SsQvob8xmEws3p7DuqRSkorrj1t+pLCW5/9K5ZULQjtNGPTUn/ElPLkqiQa9CTdbDe9eGkG14gCP7FwMwMPRD3aY0ABwstYw1lrT+RtV56FefRcSMrKkRGVo4BmP3TxSGYYWc7NwWZaRJIlfDxaSUd6Ag6WKW8b78drBl8mpy8Xd0o2vp7/CRxalfLs3nydWJZFf3cSMEBdC3K2JdonmlbEv8sjOxzlUfphD5Ydb316WFUiDrFCo6rBT2/Pp1Pc67L0R5WXHsptG8cSqJDamlPPDvgKWxRZx9Sgvbh7vh7O1hkXbzDO3Lh7mgae9uTm3tdoaa7V1u/v8d/ySio+gWv84ioJj/UJkJLDzQnbwN/+y9zUnLIwGMOnB2PJLkjANuRjZfWjn51wQhNOm20mN/zKZTDTrdIA5k3LBRReh0WhY9ssvWFhYdLp93KFDODo6tiYkxsbEsGbt2jbrbNi4kZgO+nYIgiAIgiAIgiAIgiAIQmd+2FfA+1uyWv8e4mpNTIADY/0dkYC7fj3C8rgion3suGKEV6++t85o4o316Xyzx1xmJcbfgbcuCievKZFntj8PwBXBlzE/6JKTfzNDM+rfb0FqqsTkMQxj1NWo/36UebpVPK2fiGxSUaevI68+D0e1Jx+0nJO7J/uzvvAP/spZg1JS8nLMCzhaOPDkbHt0RhM/Hyjkgy1ZfLAlCwdLFTGDHIgJCOKVEZ/ye+o/7MhPQK8sRKktQlI2I6nq0Cg0vDPhDXxsfE44ZEcrNYuuiGJ3ViXvbs7kQG4NX+7K4+f9BcyNdGdbegVKCW6Z4HfC/bTRXINy+/9QHvwKSTYhq60xjr8fU9BMcxJD1fl9S0EQzk7dSmo89eyzzJ45E19fX+pqa/np11/Zum0bq1aupKamhrnz5tHQ0MAXS5ZQU1tLTUuzblcXF5RKJX/8+SfFJSXEjB6NhYUFGzZu5H9vvsl999zT+h433XgjixYv5omnnuLaa65h85YtLFu+nBXLlvXukQ9QEWFhZ3oIgiAIPSLilyAIfZWIX4Ig9FUifgn9ic5gYskOcz372yb4cc0YH1xs2s54uH9qIG9tzODFNamEe9gw1Kt3ypkX1zRz77J4DubVAHBVjBYvn/3cufN1MmrMvQfGusdw/9B7e+X9VJueQ1EUi2zhgP7CT8HGHXnH26jri3kxMIVnmj1QWuaRUJFEQrqe8no9/k6WhA8q585tbwJwe8StRLtEAyBJEs/NCWGIhy0bU8rYm1NNVaOBtUllrE0qa3nXECCEQGcr7hoxiOEBJjJqMvG08iDIPrDLY4/xd+SHax3YnlHJu5syOVJYyy8HzbX5L4hyx9ex4yourWSZaJLQLLkWqcHcL8AYdiGGKc+CrWeXxyIIwtmrWz01br3jDjZt3kxRURH2dnZERkby4AMPMGPaNLZs3crsOXPa3S4pPh7/QYNY9/ffPP3ss6RnZCDLMkGBgdx8003ceP31KBSK1vW3bN3KI489RmJSEt7e3jz+6KMsXLCgWwfW1fpbA01qejqDW8qHCYIg9CUifgmC0FeJ+CUIQl8l4pfQn/y0v4Bn/0zB3VbD+rvGolEpjltHlmXu+jWe9clleNlrWXbTSJysulDq6QR2ZlbywPIEKpursHGOxccnibzG1NblaoWaqd5TeHz4I9hqbE/qvQAUCctR/3EXMhKGS7/FFDgNAOXuD1BtfRW9cxjD5WFI9jsZan0B+2LPodlg4tWLPFic/SDlTeXM8JnOqzEvdViCS280caSwll2Z5n4kB3Kr8bS34I5zBnFBpDtKRe+U7pJlmQ0p5XywJZPSOh0/XjecQU5WJ97IqEP1570ok1YCYHIKwjD9ZWT/Sb0yJkEQTq2u3tPvdqPwvkIkNdq3PzaWkdHRZ3oYgiAI3SbilyAIfZWIX4Ig9FUifgn9hd5oYvbHe8ivauLJ2cEsHNNxKaTaJgPzP99PVkUjEwMd+fSqoT26SW+SZZbsyOGdTZmgycfW/2tMCvNMDQUKRruN4ly/WUz1noKN2qbHx/ZvUmkS6u/PR9I3Yhh3P8aJDx9b2FSF5pNRSPoGng69iRW6dRjqA2nMuYWRflZofT/lcMURgu2D+GLqZ1ipOkke/OdYFae4gfbR/h8npG9E9futKDPWY5JUmCY+hHHUraASPXgFoa84ZY3Chb7Nsgt9TgRBEM5GIn4JgtBXifglCEJfJeKX0F+sOlJMflUTztZqLht+fPmhWl0tD+54BGu1NbcMuYn350dw+RcH2J5RyYdbs7h3SgAA9ToD+3Oq2ZyRzZaS1ShQMs39YiYGejDS1x4rjRKAmiY9j640N71WWqdg6/cDRpoYZDuIy4PmM8NnGs4Wzr13gLoGpMo0VKvuQNI3YvKfjHH8A23XsXDAGHUVqgOfc2XTEVYoQGlRAJhwD/iTbSVHsFPb8ea417uV0ABOeUID6DyhoatD/dv1KHL+QVZZkDHyOXzHLjzl4xIE4cwQMzUGGKPRiFKpPNPDEARB6DYRvwRB6KtE/BIEoa8S8UvoD4wmmTmL9pBV0chD0wO5efzxjaa/T/mRdw691/r3ad5TCVFdwhtr6gG4cqQXycV1HCnJQeG4BbXDXiSFAQCTzommonkoGsMY6m3HaD97/kgoIbeyCQvH/Wg9lmPCyGjXUbwx/rWTn5VRX4YiZTWK8lSkinSkijSk2oLWxbKtF7qFa8GqnaRJVQ6aJeMxyCbGBARiwMAg5blkG9egQMF7E99mnMfYkxtfT+kaUMZ9i1R8CJRqUFogqzSgNP+SrVwwDT4XbNtp4N5YiXrZNSgKDyBrbNBf8g0Gr9EifglCHyRmagjtij18WEwfFgShTxLxSxCEvkrEL0EQ+ioRv4T+YE1CCVkVjThYqrhq5PE3xGVZZmXWKgDCHEJJrkphY/4mNrOF8KjxJCWN55fDJWict6ANPIgkmQDwshhMnaGCGsqx8vsSfc1QDhTOZX9uNSDj4rOVZtu/MAHn+c3mmVFPoVaoe34ghiaU+5eg3PU+kq7u+OOwckZ2Cccw9dn2ExoADn6YQs5HnbyKUIWWeJOBbOMaAO6Muv3MJDT0DSgPfo1y78dIDeUnXFXe8DSy71iM4RdjCpkDlk5QX4r616tQlCYgWziiv+wHZI9hxIryeYLQr4mkhiAIgiAIgiAIgiAIgtDvmGSZRduzAVg4xgcb7fG3weIr4smoyUCr0LJo0ocUN5awOP5TNhVsIc+wHdvgnciYAHOhkzFuo7g+7DpGuY6kwdDA4oTP+Cn1F9R2h7B2SMNPvhi9Kp9s/WYArgtdyB2Rt6GQjm9M3iWyjCLlD1RbXkKqzjEfl1skpkHnIDsHIzsFIzsFmW/wd4Fx1K0ok1cxpLqEeFtrAGb6zGBhyIKeja+n9I0o475FufsjpIZSAGQHf4xRV4IkgUEHRvMvydiMVJKAIn8PUu5OFLk7kdc/gSlgClJFBorKDGRrN/SX/YTsGnZ6j0MQhDNCJDUGGE939zM9BEEQhB4R8UsQhL5KxC9BEPoqEb+Evm5DchmppQ3YaJVcM8a73XWOztKY5jMVW40tthpb3hj/Okcq4ll0ZDG7S/YAMNlrEteHLiTSObJ1W2u1NQ8Mu485fufxyoHXSahMII3vQW9uBv7w8Ae4LGh+j8cvFR1CtelZFHm7AZBtPDFMehzTkEugh0kS2WsEJu8xjK46wq+21gy2D+aZUU923rOitxiaUMZ9h3L3h0j1JeYx2fthGHcfpiGXmktPdaQmD2XiShRJK1CUxKNMX2/e3s4H3eU/g2NA66oifglC/yaSGgOMVqs900MQBEHoERG/BEHoq0T8EgShrxLxS+jLZFlm0TbzLI0Fo7yxszj+ZnmjoZF1uX8DMM//gjbLIp0i+GjS+6RVp6NRqPGzPb4Xx1FhjqF8Oe0zlqX/xkdHFmGQDbwc8yJTvCb1bPBGHcrNL6I68Ln5WFQWGMfcgXH0HaDpXhPvdnc/+jZmr7gB6/J6Is57C0uVZZe2kyrSoK4YtLbIWnvQ2oLWDhRduL1oaEJx6AdUuz9EqisCzMkIw7h7MUVcfuJkxlF2Phhj7sQYcydSWQqKpBVIVTkYJj0Odm2TViJ+CUL/JpIaA0xWTg7OTl2bkigIgnA2EfFLEIS+SsQvQRD6KhG/hL5sa1oF8UV1WKoVXDvWp9111udtoN7QgI+1DyNdR7S7TrB9UJfeTykpuTx4PnMGnYfepMNR69izgdcVoV55C4qCfQAYh8zHMOmx9htk95ApeBZKx0AmVWZgOPILxpi7O91Gue9TVJuea3eZrLZCdvBH9h6NyXs0Jp8xYNdyzg3NKA7/hGrX+0h1heb1bb3MMzMiLzc3Au8B2SUE48RHOlwu4pcg9G8iqSEIgiAIgiAIgiAIgiD0G7Is83HLLI2rRnrhZNX+jfOVmebSUxf6z+218ks2amvAukfbSnm7Uf9+K1J9CbLWDsOc9zEFz+qVcbV9IwXG0bejWPcwqq2vAmAcc5e5l0U7lDvfQ7X9dQBMDgFIhkZorkHSN5h3p29AKk2A0gSUsV8DINt6YvIahaJgP1JtQetrhph7MEVdCSoxk0IQhJ4TSY0BJjwk5EwPQRAEoUdE/BIEoa8S8UsQhL5KxC+hr9qbU01sfg0apcT1Y33bXSerNpvY8jgUKJjrP+c0j/A/ZBnFwS9QbXoeyWTA5BKG4aIlyI6Bp+wtTUOvwlCRhmrfYlRbXzWXcZrxStsyULKMcvvrqHa9D4BhwsMYx913LPlh1IOuFqmpCqkkASl/r7mZd/ERpNpClMnmpJFs44Eh5m5MQ68+bckMEb8EoX8TSY0BprCoiKDAU/efoiAIwqki4pcgCH2ViF+CIPRVIn4JfdVvceaeDfOGeuBm2/5N9N9bZmmM9xiHm6XbaRvbcfQNqNY9hjJhKQDGsAsxzH4LND2b7dFlkgLj1GeR7X1RbXwG5aHvkWry0c/7FDQ25oTGpmdR7V8CgGHKMxhH39Z2H0o1WDohWzqZEzChczEC6BqQig6iKNiPbOVsbgCusji1x/MfIn4JQv8mkhoDTFVNzZkegiAIQo+I+CUIQl8l4pcgCH2ViF9CX9SkN7I2sRSAi4a6t7uOwWTgj+w/AZgXcEG765xydSUoD32HMvYbc7kpSYlx8lMYR93SYRmoU8E04gYMdt6oVt+BImsz6h8uQn/JV6h2vo/y0HcA6Ge8gmn4dV3fqcYK2W8CRr8Jp2bQXSDilyD0byKpMcBoNT1rwCQIgnCmifglCEJfJeKXIAh9lYhfQl+0ObWcep0RTzstI3zt211ne9EOypsrcNI6co7nxO69QX0ZisIDSEWxoLLAFDQT2SWsy4kIqfAgygNfoEj6HcmkB0C28UR//vvIZygJYAqejf7K5aiXLURRmoBmyTlIxmZkSYHh3LcwRV5xRsZ1MkT8EoT+TSQ1BpiI8PAzPQRBEIQeEfFLEIS+SsQvQRD6KhG/hL5o9ZESAOZGuqHoINGwMvN3AM4fNAeV4sS3xqSKNBSZm5EK9qMoPIhUndN2hW2vITv4Yxx8Lqbgc5G9R4GkMC/TNSBVZZl/VWagSF2DovBA66Ymz5EYR96AKeR8UJ7Zm/CyxzB0C1ajXrYARXkqskKF4fwPMIXNO6Pj6ikRvwShfxNJjQHmQFwcI6Ojz/QwBEEQuk3EL0EQ+ioRvwRB6KtE/BL6mpomPZvTygGYG9l+6amyxjJ2FO0EYJ7/iUtPKZL/QLX6diSToc3rJufByJ7DobECRdY2pKosVHs/gb2fIFu5IjsGIFXnINUVHbdPWanBFDYP44gbkD2G9eQwTx17X/RXr0S571NMfhPO2MyR3iDilyD0byKpIQiCIAiCIAiCIAiCIPR5axPL0BtlQlytCXO3aXed1dl/YpSNDHWOwt/Ov8N9KZJXo1p1O5JsxOQ9BlPAFEyeI5A9o0Frd2xFXT2KzE3mWRgZ65EaSpEaSlsXyxYOyI4ByA7+yG4RGCMuB2uX3jngU8HCAePER870KARBEE5IJDUGGHdX1zM9BEEQhB4R8UsQhL5KxC9BEPoqEb+Evmb1kWLAXHqqPbIs83vWKgDm+V/Y4X4UyatQrboDSTZijLgMw7lvg0LZ/soaa0yhczGFzgWjDil3F1JDWWsiA0vHkzomoWdE/BKE/k0kNQYYa2vrMz0EQRCEHhHxSxCEvkrEL0EQ+ioRv4S+pLimmd1ZVQCc30FSI7Ysjpy6XKxUVsz0nd7uOoqklahW39WS0Lgcw7lvdZzQ+C+lBtl/EnJPDkDoVSJ+CUL/pjjTAxBOr4ysrDM9BEEQhB4R8UsQhL5KxC9BEPoqEb+EvuTPhBJkYISvHT4Olu2vk7MGgOk+07BSWR23XJG44lhCI7KbCQ3hrCLilyD0b2KmhiAIgiAIgiAIgiAIgtCnrWotPdV+g3CdUcf6vA0AzPE797jlisTfUP1xN5Jswhh5hTmhIYlngQVBEM5GIjoPMKHBwWd6CIIgCD0i4pcgCH2ViF+CIPRVIn4JfUVGWQPxhXWoFBLnDWm/l8I/RTuo1dfiauHKCNfhbZZJFWmo/rjHnNCIulIkNPoBEb8EoX8TEXqAKS0rO9NDEARB6BERvwRB6KtE/BIEoa8S8UvoK442CJ8Q6IiTlabddf7KWQvAuX6zUEptS0opDv+MJBsxDToHw+w3RUKjHxDxSxD6NxGlB5iKqqozPQRBEIQeEfFLEIS+SsQvQRD6KhG/hL5AluXW0lMXdFB6qlZXy7bC7QCc6ze77UKTEWXCMgCM0deKhEY/IeKXIPRvIlIPMCqVaKMiCELfJOKXIAh9lYhfgiD0VSJ+CX3B4YJaciqbsFQrmBbq3O46G/I3oTfpCbQLJMR+cJtlUs52pLoiZAsHTIHTT8eQhdNAxC9B6N9EUmOAGRYZeaaHIAiC0CMifgmC0FeJ+CUIQl8l4pfQFxydpTE91AVrTfs3sv/KWQPAeX6zkSSpzTJl/FIATGHzQKU9hSMVTicRvwShfxNJjQHmYFzcmR6CIAhCj4j4JQhCXyXilyAIfZWIX8LZzmAy8Wd8CdBx6amihmIOlB4E4FzfWW0X6upQpP4JgDHislM3UOG0E/FLEPo3kdQYYEyyfKaHIAiC0CMifgmC0FeJ+CUIQl8l4pdwttudVUVZvR4HSxUTAh3bXWdt7jpkZIa7RONp7dlmmSLlTyR9IybHQGTP4adjyMJpIuKXIPRvIqkxwLg4t19fUhAE4Wwn4pcgCH2ViF+CIPRVIn4JZ7t1SWUAzA53Ra1s/xbXmpy1AJznd+5xy1pLT0VcBv8pSyX0bSJ+CUL/JpIaA4yDnd2ZHoIgCEKPiPglCEJfJeKXIAh9lYhfwtlMlmU2p5YD5n4a7UmrTiO1Og2VpGK6z9S2C2vykHL+AcA45NJTOlbh9BPxSxD6t24lNT797DNGxcTg6umJq6cnk6dNY+26da3Lm5qauPf++/Hy88PZ3Z0rr76a4uLiNvvIyc3loksvxdHVFV9/fx5/8kkMBkObdbZs3crYCROwc3JiyNChfPPddydxiMK/pWVmnukhCIIg9IiIX4Ig9FUifgmC0FeJ+CWczZKK6yiqacZSrWCsv0O76/zVMktjoucE7DX2bZYpE35DQsbkOx7sfU71cIXTTMQvQejfupXU8Pb25qUXXmDntm3s2LqVyZMmMf+KK0hISADg4Ucf5Y+//uL7b77h7zVrKCwq4or/+7/W7Y1GIxdfeik6nY7NGzaw5NNP+fa773j+pZda18nMyuLi+fOZPGkSe3bs4O477uD2O+/k7/Xre+mQBUEQBEEQBEEQBEEQhL5sY4p5lsb4AEe0KuVxy02yiTU55gdxz/Wb3XahLKOI/xUAY8T8UztQQRAEoddJTXV1J9U5x9PXl1deeolLLroIH39/vv7iCy65+GIAkpOTGTZyJFs2biRmzBjWrlvHxfPnk5mairu7OwCfLVnCk888Q15WFhqNhieffpq/1qzhwN69re9xzbXXUlVdzaoVK7o8rpqaGty8vCgpKMBOTDlrVV1Tg704H4Ig9EEifgmC0FeJ+CUIQl8l4pdwNrvs8/0cKqjlpbkhXDbc67jl+0sPcOuWO7BWWbPugj/RKrWty6TCg2i+Ox9ZZYHujjjQ2p7OoQungYhfgtA3dfWefo97ahiNRn759Vfq6+sZO2YMBw4eRK/XM23qsRqFoaGh+Pr6snvPHgB27d5NZEREa0IDYMaMGdTU1JCQmNi6zr/3cXSdo/voSHNzMzU1Na2/amtre3po/VpVVdWZHoIgCEKPiPglCEJfJeKXIAh9lYhfwtmqtK6ZQwXm+z6Tg9tvCP1XzhoApvtMa5PQAFC2zNIwDZ4jEhr9lIhfgtC/qbq7wZEjR5g8fTpNTU3Y2Njwy48/Eh4eTtzhw2g0GhwcHNqs7+7m1tpXo7i4GDc3t+OWH10GUFxS0u46NTU1NDY2Ymlp2e64/vfmm7z86qvHvR57+DDW1tYMi4wkJS2NxqYmbG1s8PP1Jb4lkeLr7Y1JlskvKAAgasgQMrKzqa+vx8rKiqCAAA7HxwPg7emJQqkkNy8PgIiwMHLz86mprcXSwoLQwYOJPXwYAE93d7RaLVk5OQCEh4RQWFREVU0NWo2GiPBwDsTFmY/R1RVra2sysrIACA0OprSsjIqqKlQqFcMiIzkYF4dJlnFxdsbBzq61PmBwYCBVVVWUVVSgUCgYPnQocYcPYzAacXJ0xMXZmZS0NAD0ej0KhYKSsjIARkZHczg+Hp1ej4O9PR7u7iSlpADg7+dHU1MTRSUlAERHRZGUkkJTczN2trb4eHuTkJQEgJ+PDwaDgYKiIgCGRkaSlp5OQ2MjNtbW+Pv5caTlfPt4mZ+gyGs535Hh4WTl5FBXX4+VpSXBQUEcOnIEAC8PD1QqFTkt53tIWBh5LefbQqslLCSk9Xx7uLlhYWHRer7DQkIoKi6mqroajVpNVEQE+2NjAXBzccHGxqb1fIcEB1NWXk5FZSUqpZJhUVEcPHQIk8mEi5MTDg4OpGVkmM93QABVNTWUlZejkCSGDxtG3JEjGAwGnBwccHVxIbnlfAf6+1NfX09xaSkAI4YNIz4xkWadDgc7Ozw9PEj81/lubm6msOVnIToqiuTUVBqbmrCztcXX25v4lvPt6+ODyWgkv7DQ/JmNiCA9M5OGhgasra0JHDSIwy1l4by9vFBIErn5+ebPbHg4Obm51NbVYWlhQUhwMHEt59vTwwONWk12bq75MxsaSkFhIdU1NWi1WoaEhnLw0CHzZ9bNDStLSzKzs82f2cGDKSktpbKqCrVazdCICA7ExSHLMq4uLtjZ2pLe8pkdHBRERWUl5RUVKJVKoqOiiD18GKPRiLOTE06OjqSmpwMQFBBATW0tpWVlSJLEiGHDOBQfj16vx9HBATdXV5JTUwEIGDSIhsZGils+s8OHDiUhOZnm5mbs7ezw8vQkMTkZgEG+vuj0egpbPrMiRhz7zNbV1Z2VMSK/sJCGxkYRI0SMEDFCxAigb11HFJaUUFZRYT7fIkaYP7MiRogYIWJEn7iOqK6pwdPTU8QIRIw422LEvgq1eZ/2SqTmWgrrK9vEiITURNZm/w3ADM9prT+fPl5eYNTjeWQZSqApZB7pqakiRvTD64j0rCzKKipEjBigMUJcR/TdGHH0WDrT7fJTOp2O3NxcqmtqWL5iBV999RV/r1lD3OHD3HLbbdS0fGE7auLkyUyeNImXX3yRO+66i5zcXFavXNm6vKGhASc3N1YuX87sWbOIjI5m4YIFPPLQQ63rrFm7losuvZTK0tIOkxrNzc00Nze3/r22tpag0FBRfuo/Dh46xPChQ8/0MARBELpNxC9BEPoqEb8EQeirRPwSzlZ3/nKE9cll3D3Zn7sm+R+3fFP+Zh7e+Rhulq6snrMShXSsUIki9S/UK25EtnZHd9s+UBzfj0Po+0T8EoS+qavlp7o9U0Oj0RAUFATAiOHD2b9/Px9+/DHzWxqAV1VVtZmtUVxS0lpuyt3dnX3797fZ39EMZus6bm6UtLz273Xs7Ow6TGgAaLVatFpth8sFMxHQBUHoq0T8EgShrxLxSxCEvkrEL+Fs1GwwsiPD/EDt1MHtl57amL8JgBk+09skNAAU8UsBMA65RCQ0+jERvwShf+txT42jTCYTzTodI4YPR61Ws2nz5tZlKSkp5ObmEjNmDABjY2I4Eh/fJmmxYeNG7OzsCA8La13n3/s4us7RfQgnJ65l2pMgCEJfI+KXIAh9lYhfgiD0VSJ+CWej3VlVNOhNuNlqGOJhc9xyvUnPtsJ/AJjmPaXtwsYKFOnrATBFXHaqhyqcQSJ+CUL/1q2ZGk89+yyzZ87E19eXutpafvr1V7Zu28aqlSuxt7fnuoULeeTxx3F0dMTOzo4HHnqIsTExrQmJGdOnEx4Wxg0338wrL71EcXExz7/wArfeckvrLIubbryRRYsX88RTT3HtNdewecsWli1fzoply3r/6Acgg9F4pocgCILQIyJ+CYLQV4n4JQjdY5JlnlqdTEW9npvG+zLKz+FMD2nAEvFLOBttTi0HzLM0JEk6bvm+kv3U6etw1joR5RzVZpki+Q8kkx6TWwSya9hpGa9wZoj4JQj9W7eSGqWlpdx4yy0UFRVhb2dHZGQkq1auZMa0aQC88frrKBQKrlqwgObmZmZOn857777bur1SqWT50qXcc999TJ42DWsrKxb83//x7FNPta4T4O/Pb0uX8shjj/Hhxx/j7e3Noo8+YuaMGb1zxAOck6PjmR6CIAhCj4j4JQhCXyXilyB0z+6sKpbFmpt5bkotZ2KQI/dOCWCoV/t1lU2yTGpJPZIEIW7HP7Ut9JyIX8LZRpZlNv0rqdGeTQVbAJjkNQml1La8lDJpBQCm8EtO3SCFs4KIX4LQv3W7UXhf0dWmIgNNbV0dtjbiQl8QhL5HxC9BEPoqEb8EoXse/C2B1UdKGORkSX5VEwaT+Svr9BBn7pkSQKibNVkVjezKqmRXZhW7s6uobNCjkOCH64Yz3Mf+DB9B/yHil3C2SS6u48JP96FVKdj90AQs1W2TFkbZyJzVF1DeXMEHE99lnMfYYwtrC9F8MgoJmeZb94Cdz2kevXA6ifglCH1TV+/pn3RPDaFvSUlLO9NDEARB6BERvwRB6KtE/BKErqtu1LMusRSAty4OZ80dY7h4qDsKCTaklDPv031MfGcH5368h+f+TGVNYimVDXokwCTD63+nI8u9/9zejowK7l0az57sql7f99lMxC/hbHN0lsb4AMfjEhoAh8uPUN5cgY3ahlFuI9ssUyavQkLG5D1aJDQGABG/BKF/E0kNQRAEQRAEQRAE4ayw6kgxOqNMqJs1kZ62+Dpa8tq8cFbfNpo5Q1wBKKvXo1ZKjBnkwL1T/PnxuuFsuHsslmoFB/NqWNuSFOkNJlnmw61Z3PD9IdYklnLtt7F8+k9OlxInxTXNmE5BgqWnapr0NOpFjXmhbzvaT2NKB6WnNuebS0+d4zkBtULdZpkiaSUAxrCLTt0ABUEQhNOiWz01hL4v0N//TA9BEAShR0T8EgShrxLxSxC6RpZlfj1YCMBlwz3bNAAOcrHmnUsjuGdKA2V1OqK8bLH4z1PaN47z5cOt2by5MYNpoS5olCf3DF9lg55HViayNa0CgHB3GxKL63hrYwaxedW8Ni8MOwv1cdsdyq/hvc2ZbM+o5PqxPjw2M/ikxtFT9ToD+3Oq2ZVVxa6sShIK61ApJZ6cHcyVI7zabbD8XyJ+CWeT8nodsXk1QPv9NGRZZlPBZvNy7yltF1Zloyg8iCwpMIXOPcUjFc4GIn4JQv8mkhoDTF1dHY4ODmd6GIIgCN0m4pcgCH2ViF+C0DXxRXUkFdejUUpcEOXe7joBzlYEOFu1u+yGcb78fKCQ3MomftiXz3Uxvj0ey6GCGu5dGk9BdTNalYLn5gzm4qEe/HKwkBfXpLIhpZxLl+zn/fkRhHvYApBYVMt7m7Nay+MA7Mys7PEYempFXBE/HyzgUH5taz+So/RGmef+TOVgbg3Pnx/SbvmefxPxSzhKZzARl1/D7uwq7CxUXDnCC43q9Bb/2JpWgQwM8bDB3U573PLU6jTy6wvQKrSMcx/bZpmyZZaG7DcBrF1Px3CFM0zEL0Ho30RSY4ApKSvD10fUjhQEoe8R8UsQhL5KxC9B6JqlLbM0ZoW54mB5/AyIzlhrVNw7xZ+nVqfw8dZsLh7qgX039yPLMj8fKOSltanojTJ+jhZ8MD+SMA9zs9krRngxxMOGe5fGk1PZxBVfHuT+qQHE5tWwpqXslUKCaSEurE8uI6OsAaNJRqnofFZEb6io1/HEqiSMLbkMb3stYwMcGevvSMwgB1YdKeatjRmsPFxMYnEdH8yPwL+DJBGI+HU2O1oCrSszbnrCYDKRUFjHrqxKdmVVsT+nmiaDqXX5qsPFvDc/Ai97i1Py/u3ZlFIGtD9LA2BT/mYAxnmMxVJl2WaZIrGl9FT4RadsfMLZRcQvQejfRFJDEARBEARBEARBOKMa9UZWHSkGYP5wzx7v55JhnnyzO5+U0no+2Z7No90o/XSooIb3NpnLRgHMCHXh1QtDjysxFeVlx/KbR/HwCnNpqtf+Tm9ddn6EG3dN8sff2ZIRr2+jUW8ip7Kxw9klvW1DShlGGQa7WrHoiih8Hdve2L1pvB9RXrY8sDyBlJJ6Lv18P69dGMbMMPHkel+yP7eam76Pw9FKTYy/I2P9HRjr79ju7IWuMskyKcX17MquZFdmFXtzqqhrbtuDxdlazSg/B3ZlVnKooJaLP9vHWxcPYWKQ08keUqd0RhPbWn42p4R0kNRoKT01xXtym9elsmQUZYnICjWmweed0nEKgiAIp4dIagwwI6Ojz/QQBEEQekTEL0EQ+ioRvwShc2sTS6lrNuLjYEGMv0OP96NUSDwyM4ibfjjEt3vzuXqU93E39v8rqbiO9zdnsiHFXDZKpZC4b2oAN43z7fApeAdLNYuvjOKT7dl8+k8OEwKduHuyP2HuNq3rBLpYEV9YR2pJ/WlLaqxLMj/Jfn6Ee4fHHePvyG83j+K+ZQnsz63mrl/juWGcLw9OC0ClaFtOSMSvs0+T3sjjvyfRoDfRUN3M8rgilscVAeDvZEmMvwMe3UhumGRIKalnd1YlVY2GNsvsLFSMGeTQmjQJdrVCkiTyqhq5Z2k88YV13PTDIe6a7M8d5wxCcYpmjTTpjaw4VEyDzoirjYZIT9vj1smtyyWtOh2lpOQczwltlh1tEG4KmAIWDqdkjMLZR8QvQejfRFJjgDkcH09URMSZHoYgCEK3ifglCEJfJeKXIHTuaOmpS6M9TnhjtE5fj8Gkx0Hr0OE65wQ5MTHQke0Zlby9MYN3Lm3/5y+9rJ4Pt2TxZ8KxslHzoty5c5J/p4kQ8/oSd5zjz+0TB7Wb/Bjsam1OapTWMyv81M+EqGnSs7PlSfZZ4S4nXNfNVsvX1wzj7Y0ZfLErjy925nI4v4a3LxmCm+2xG+Iifp19PtyaRXZFI262Gl6YE8L+XHMz+PjCWrIqGsmqaOzxvq3UCkYNciBmkANjAxwJd7dpt3Saj4MlP143nJfXpvHzgUI+2JJFXH4N/5sXjqNV90vH/ZfOaOJQfg27sqrYnVXFwbxq9C011SYHO7UbIzblbwFgpOsI7DX2xxbIcmvpKZMoPTWgiPglCP2bSGoMMDq9/kwPQRAEoUdE/BIEoa8S8UsQTiyrvIG9OdUoJLhkmEeH6+lNehasv5aypjLeGPca4zzGdrjuwzOC+OfTffyZUMq1MdVE+9ijN5o4XFDb2iNgb3YVR/tozxniyl2T/Qlyse72+DuazTHY1byvtNL6bu+zJzallKM3yQS7WHXpONRKBY/ODCbax57Hf09ib041lyzZzzuXDGH0IAdAxK+zzZHCWr7YmQvAc+eFMDXEhakh5gRWTZOevdnV7GunbFRnPO21jPV3JMrLFrWya82/tSolL5wfSrSPHc/9mcrWtAou/Xw/X/3fMPycOk8Ktscky3z6Tw6Lt2fToDe1WeZuq2FcgCN3TfJvd9uj/TSmeU9p87pUfBhFVSayygJT0KwejUvom0T8EoT+TSQ1BhgHe/vOVxIEQTgLifglCEJfJeKXIJzYslhz6ZxzgpzwsOu46fD6vA3k1ecB8MCOh3kl5kWm/ucG5lFh7jZcEu3BstginlqdjKe9Bfuyq467UTo9xJl7pgS0KRvVW44lNRp6fd/tOVp6qruzQmaHuxLiZs09v8aTUlrPtd/G8uD0QG4Y63tc/JJlmfSyBgqqm5gQ6HTaGqALoDeaeLKlCfycIa5MD207G8fOQs30UJfjXj/VLhnmyRB3W+5eeoScyiau/S6W7xYOx9uhew3Eqxr1PLoykc2pFQA4WqkZ6+9ATEvpK38nyw4TiKWNpRyuOALAZK9JbZYpEn8DwBQ0EzTdT1oKfZe4/hKE/k0kNQYYD3f3Mz0EQRCEHhHxSxCEvkrEL0HomMFk4rdD5qTG/OiOG4TLsswPqT8B4GbpSkljKY/tepJnRz3FnEHtN/69d3IAf8aXkFraQGpLYsHBUtXaWHl8gCP+p6jXRXJVCruq16GwtCWz3B+90dTlJ+B7ol5nYFu6+Wbw7B40/Q5wtuLnG0bw7J8p/H64mP+tzyA2r4YnZ/iRW9nIrqwqdmVVsjuritI6HQAXRLrx+rxwkdg4TT7fmUtScT0OliqeOnfwmR5OG2EeNvxw3XAWfB1LVkUj134Xy/cLh3e5cfmRwlruWRpPflUTWpWCZ84bzCXDTlyK7t82F5hLTw11isLV8l+ff9mEMvl3QJSeGojE9Zcg9G8iqTHAJKWknLJmSbuzKvl6dx5zI905d4jrKWsSJgjCwHQq45cgCMKpJOKXIHRsS2oFpXU6nK3VTAlx7nC9uPI4EiuT0Cq0fDP9Kz46/DGrsv/g2b0v0GBoZH7QJcdt426n5ZULwvg7qZRh3naM9XckxN36lH1PMZgMbMrfzM9pvxJbHgeA1SAJfeVYkkqGEOV56vpqbE2roNlgws/RglD37j2N3mRootnUjL3Gnv/NC2OErx0vr01jXVIZm1LK+M/kFrQqBQajiVVHSlArFbx8Qaj47neKpZfV89HWLAAenxWMs7XmjI7HKBupaq6ioqmC8qYKypsrKG8q57rpdixZ70JuZRMLv43lu2ujcbXpOLEhyzJLYwt54a9UdEYZX0cLPpgfQbjH8Y3AT+RoP40p3pPbvC7l70WqLUTW2GIKmNr9AxX6NHH9JQj9m0hqCL1ClmWe/yuV9LIGNqSUs2i7NfdOCWB6iHOHU0QFQRAEQRAEQRi4ZFnm15YG4fOGeqA5wUyGH1J/BuC8QbNxsXDm6VFPYqmy5Jf0pbx28H80Ghq5JvT/jttuToQbcyLcTmqczcZmPon/lN+zVuGgdSTQ1p9Au0AC7AIItAvATmPH6uw/WJ7xGyWN5qbjSklJhNMQDpUfRuO0k/v23MBLMU+esA/IyViXaH7fmWGuJ/z+ZZSNZNVkc6QinvjKBI5UxJNenY6ExFMjH2eu//lcNdKbCE9b7l0aT0F1MyqF1JIUMjePjva2Y0NKGQ8sT2B5XBEalYLnzhssvvedIiZZ5qnVyeiMMucEOTEvqveePjfKRn5NW0pOXS6ulq64WrjgYuGCi6ULrpYu6Iw6smqzya7Nbvk9h6zaLIobSjBhanef44dOxhg7l6yKRq77No5vF0bj1E4SprbJwCvr0lgeZ56pNS3EmdfnhWFn0b1G49W6avaXHgBg6n+SGsrEFQCYQs4DVffKYQmCIAhnN5HUGGD8/fxOyX5j82tIL2tAq1KgVkqklNRz5y9HiPS05d4p/pwT5CQucgVBOCmnKn4JgiCcaiJ+CcIx+VVNrY26d2VVUlJrLmU0P7rjBuH59QVsbnkS+6rgKwFQSAoejn4Qa5U1XyZ/zXuHP6DeUM8tQ25CIfVemafEyiSe3fs8GTWZAFTrasiuzWZTS7mb/3LSOnJJ4MVcGngxrpau3LpyGXvrl1BNKXdvv4+5g+Zw/7B7sdf0Xq33ZoORzWktpadO0E9j0ZHF/JT2M/WG9nt8PLfvRYobS7gh7DqGetnxx21j2J9eyIggD6w1bW8dnDfEDYNR5uEVify0vwCNUuKJWcHiO98p8OO+Ag7k1mClUfL8nJBeO8dNxiae2v1sa+mm7pKQcNA64GzhhJPWCXuNPZvyN7OjZAtRETUYjlxGWlkD138fx9fXRKNVKTiQW82uzCp2Z1dypKAWowwKCe6fGshN4327PeOn0dDIu3HvY5SNBNsH4Wvje2yhyYAiZTUAxrCLenSMQt8mrr8EoX8TSY0Bpqmp6ZTs9+gTVudHuPHozCC+3JnLN3vyOFJYy80/HmaErx3PzwkhxK33G/AJgjAwnKr4JQiCcKqJ+CUMZCW1zew+2o8hu4rcyrY/DxqlxOUjvAhy6bhk0i9pv2LCRIzbGILsA1tflySJO6Nux0ptxUdHFrEk8QuOVMTzzKgncbM8udkZBpOBL5O+ZkniFxhlI85aJx4e/iA2ahsya7LIqMkgoyaTjJpMavW1RDgO4Yrgy5jhMx2N8thT6WPdx7B5vS0hYVspYgOrs/9kZ9EuXh/3CtEu0Sc1xqP+yaikQWfEw05LlFf7ZXsaDY18lfwNRtmIpdKScMcwIp0iiHAaQoRTBL+mL+Xr5G9ZFL+Y4sYSHol+ECuNikB7xXEJjaMuiHJHZzTxxKpkvtmTj0ap4KHpgSKx0YsO5Fbz5sYMAB6aFtjt5tsdqdHV8MA/DxNbHodGoeHSwIup09dR2lRGWVMZpY1lVOuqUUpKvK29GGTrh7+tf8vvg/C29sZR64hK0fazsad4Lw/tfJTDlQcJCK3DlPR/JBXD+Yv2UN1oQG+S26wf5GLFM+cNZqy/Y7ePIa7sEM/te4HcujwArh58VZvlisxNSA3lyJZOyH4Tur1/oe8T11+C0L+JpMYAU1RSgreXV6/us67ZwF/xJQBcGu2Bg6Wa+6cFsjDGh8925PBDy5Mll39xgBfOD+XCXpwuKwjCwHEq4pcgCMLpIOKXMJBUNerZ05LE2JVVRXpZ21kBSgmGetsR4+/AWH9HhvvYYaFWdri/en09KzLNjX6vHnxlu+tcH3YtjloH3oh9m13Fu7ly3QIeH/EIM31n9OgYMmsyeXbvCyRUJgIw3Xsaj494BAetAwBj3WNa15VlmUZjI1aq9huOB7tag6zBUHIhn19xBS/ue5nM2izejnuPb6Z/2aPx/dex0lMuHT7pHlsWh1E24mnlwYrzlqGU2p7zu6PuxM3SjTdj32Z5xm+UNpbySsyLncavS6M90RlNPPdnKkt25qJVKbhnSkCvHNdAFl9Yy3ubM9nSMgNnhK8dV43q2v8j5U3lWKmssFRZtru8uKGEu7ffR0ZNBjZqG94e/wYjXIcft16zsRmFpECt6Ho5qDHuo1k8+WPu2X4/mXWpeAR/hjH9Wspq7ADwsNMyruVnP8bfAU/77idpdEYdnyYs4Zvk7zBhws3SlWdGPdXm5xKjHuWWl81/jLgMlN0raSX0D+L6SxD6N5HUEE7aXwklNOhNBDhbMtL32DRqZ2sNj80M5voYXx5flcQ/GZU8vCKRA7nVPDErGI2q96aFC4IgCIIgCIJwZqWV1nPpkv00GY7V2peAIR42xAQ4MtbfgZG+9thou/41dFXWauoN9QyyHXTCfhQXBcwj2nkYz+x9noTKRB7f/RRbC7fxSPRD2GqOzV6o19dzqPwwB8oOklGTid6oQ28yoDOZfzeY9GTVZqMz6bBV2/Lo8IeY7Turw9kHkiR1mNAAGOxqXpZd0UCY/Sjenfg28/66hJSqVPQmfbduGLdHbzSxMaUcgNlhHZee2luyD4DRbqOPS2gcdUXwZbhauvD07ufYVrid27bcyfUO13c6hqtGeqM3yry8No2PtmXj62jJxcM6LicmdCylpI4PtmSxLqkMMCcBLx7mwYPTArtUmmlfyX7u2nYvSoWSiR4TmOk7g4ke47Fo6SeRUZPJ3dvuo7ixGFcLVz445x2C7YPb3ZdW2XGD7xMJdwxjyZTF3LXtHgob8nEM+IQbPJ7h3OCh+DlantRMnpSqVJ7d+zyp1WkAzPE7j4ejH2jzMw6gjP0aRXkKsqUTxnH39vj9BEEQhLOXSGoMMNFRUb2+z6UHzY295kd7tnuB4m6n5bOrhvLR1iw+2pbNj/sLOFJYy/vzI/DqwZMZgiAMTKcifgmCIJwOIn71LQaTiZ/3F2JnoSLG3wE3257d2BuIfj1YSJPBhLuthhmhLoz1d2T0IAccrXp2494oG/kp7VcArgq+vNNeGf52/nwx9TM+T/ySL5K+4q+ctRwoPchN4TeQU5fL/tKDJFclY5SNnb73OPexPD3qiZMuY+Vuq8VWq6S22UhmeQMhbp7Yqm2p1deSUZNJqEPISe1/d1YV1U0GnK3VjPDtuE/HvtL9AIx2G3nC/U3znorTJCce3PEw8ZUJvKt7F/tSW4a7Rp9wu4VjfKhq0PPRtmw+2JrF3Eg31Cdo/C60VV6v45V1afxxpAQZczJwbqQbd03yx9+546TZvzUaGnlx/ysYZAMGo4EN+RvZkL8RC6UF53hOZLhLNJ/Ef0qNvgZ/20F8MPFdPK09T8nxDLL144upn3HXtvtIr0nnx8KnmBj8PpI0pNv7qtXVsr3oHzblb2FrwTYMsgEHjQNPjHyUad5Tj9+gvgzlP28CYDjncbBwOMmjEfoqcf0lCP2bSGoMMEkpKUSEh/fa/lJL6onNr0GlkLhoaMdP4ygVEvdMCWCYtx0Pr0jkcEEtF3+2jzcvHsI5QU69Nh5BEPqv3o5fgiAIp4uIX33L8tgiXliT2vr3IBcrxraUSzmZG/T9ndEk80dLSdpnzgthRqjLSe9zW+E/5NXnYae24/xBc7q0jUqh4taImxnvMY5n9j5Hbl0eLx94rc063tZeDHeJZojjEKzUVqgVatQKFWpJjVqhxk5jR7hjWK/0hpAkiWBXaw7m1ZBWWk+ouw2hDiHsK91PclXKSSc11iWZS0/NCHVBqWh/vDW6GpIqkwEY5XripAZAtMswPp/yKXdvv4+8+nxu3nIbM31mcO/Qu/Cw6vg7380T/PjpQAH5VU2sOlLMJcNOzQ3z/qaiXsfCb2JJaynVNjvMhbsnBzDYreM+M+35+Mhi8uvzcbd05+WY59lW+A/r8zaQX1/A33nr+TtvPQBRTpG8M+EtHLS916y+Pa6Wrnw2ZRH3//MQceWHuHvbfXwy+SNCHAZ3um1ZYxmbC7ayuWAL+0r2Y5ANrcsme03iiRGP4mzh3O62qu2vITXXYHKPwhTVfsk6YWAQ11+C0L+JpMYA09Tc3Kv7WxprbhA+dbAzLjaaTtaGyYOdWX7zSO5ZGk98YR03/3CIp84NZsFon14dlyAI/U9vxy9BEITTRcSvvuWvBPNNYlcbDWV1OtLLGkgva+D7fQVIwA3jfHlkRtCZHeRZaE92FaV1OuwtVEwK7p2Hln5M/QmAiwPnddgfoA1ZhpZERJRzJD/M+JaPjywmrjyOUIdQRrhGM9xlOB5Wp7fH3+CWpEZKaT3nw7+SGsnA3B7v12iSWZ9sLlM0O7zj0lMHymIxYcLfdhCulh2v92/+dv58O/0rnt/yMttrtvN33nq2FmxjYegCFoYuaPffw1Kt5IaxvryxIYPF23OYF+XRYaKlI/U6A9/vzeeHfQVEetpy92R/Qt1turWPvqSqUc/138eRVtaAu62Gj6+IItKz/WbvJxJXdoif0n4G4KmRjxPtEk20SzR3Rd5BYmUSf+etZ0vBNkIdQnh21FOt5ahONTuNHe9PfIe7t93HoYrD3LntHj6d/DEBdu33XWkyNPHuofdZlvEbMseaigfY+jPFezJTvaacMOEoFcWhOPQjAIZpL4Ki4349Qv8nrr8EoX8TSY0Bxs62+xdIHdEZTKw41FJ6anjXn8LxcbDkx+uG8/LaNH4+UMiLa9JQKRRcOVI0cBIEoWO9Gb8EQRBOJxG/+o7KBj27syoB+G5hNA5WavZmV7Erq4pdmZWklTXw+c5cxvo7MCm4/aeEB6pVR4oB8811TS+UHUquSmF/6QGUkpLLguZ3vKK+AUXCbyhjv0JqKMdwzmOYIuaDpMBSZcmD0fed9Fh6zNAESq25WTiQVmp+Ev/o7Iyjsyd6an9uNeX1euwtVIwZ5NDhevta+2mM6tb+HbQO3BF0G7c538xbse9woOwgnyV+zsqs37kj4jZGuY3E1dK1TY+OK0d68dmOHLIqGlmTUML5kV1LIDXpjfy0v4DF/+RQ0aAHoLCmmfXJZcyJMJdhCnTpWhmmvqK2ycAN38eRVFyPi7War6+JJqCLpab+rdnYzAv7X0ZG5gL/uW16z0iSxBCncIY4hXPv0LtPbsCyCRoqkOqLobkWTAaQjUgmI8hGMBmQrVyRvUa2JhcBrNXWvDfxbW7fehdJVcncvvVuPpuyCF8b3za7T61K5ck9z5BRkwlAhOMQpnpPYYr3ZPxtB3VpfKoNTyEhYxxyKbLPmJM7XqHPE9dfgtC/iaTGAOPj7d1r+9qQUkZVowE3Ww0Tgxy7ta1WpeT5OSHYaFV8vjOXZ/9MQaOSxBRlQRA61JvxSxAE4XQS8avv2JhShlGGEDfr1jr2M8NcmdnSgPnVdWl8tTuPZ/9MYdWto7vV8Lo/azYYWZdonuFyQVTvzII4Oktjus+09mdWVGWjPPgVysM/ITVXt76s/us+THHfYZjxCrJ7ZK+MpUsaK5GKD6MoPtTy+2GkqixkrR1XWAdgr3KkomAQivTphGrtAEitTsMkmzrtFdKRo6WnpoU4n7B/xd4Scz+NrpSe+i8fb28sLSxYPPljNuZv4r1DH1DQUMhz+14EQK1Q42nliY+NN97W3vjbDuKq0VEs2lrEJ9tzOC/C7YQNrnVGE0sPFrJoezYltToA/BwtuGGcL7uzqvgroZQ/4kv4K6GEeVHu3DnJH1/HLszaOcvVNRu46YdDxBfW4Wil5qsFPUtoAHyW8DnZtdm4WLhw/9B7Tn5wTdUo8vcg5e5CqkxHqisxJzLqS5FMhk43N3mOxDDhQWT/ya3JDVuNLR+e8z63brmD9Jp0bt96N0umfIKHlQeyLPNz2i+8f/gjdCYdzhbOPD/6Gca6x3Rr2IqE5SgK9iOrrTBMfrJHhy70L+L6SxD6N3EVPsAkJCUxMjq6V/a19KC59NQlwzxQKbp/IS5JEg9PD0RvNPHNnnye+D0ZtULRa1+EBEHoX3ozfgmCIJxOIn71HUdvEs8Oa79Ez71TAlifXEZeVRPvbMrk6XM7rw0/EGxJraC22YiHnZZRfidfp/9I+RHW5KwD4OrgK9oskwpjUe58B0X6eqSW8jSy/SCMw68Dk8G8rGAf6m/PxRS9EMPER3q/UXBD+bHERfEh8+/VOe2uKjXXYN8cxxUqQA8s/5oQwCLAnwZDA7l1eQyy9ev2EBr1xxJJs05Qeqq8qZz0mnQARnYnqWFoQqrMIjsxnrBzLkGSJKb7TGOi5wS+T/mR1dl/kF9fgN6kJ6cuh5y6Y8d/ScBl2GjHkFJaz4bkstak4H8dKazlnqXx5Fc1AeBlr+WOc/y5aKg7aqWCq0Z6c+uEWt7fksXGlHJ+O1TMqiMlXBrtwR3nDMLD7vSUUOptDTojt/50mNj8GuwtVHz1f8O63T/jqISKRL5N+R6Ax0c8gp3Grvs7aapGkbsTKXen+feS+NafrfbIVi7IFvagUIGkNJd4ksy/pNJ4FIX70Sy9+rjkhoPWno8mvc8tm28npy6H27bcxf/GvcpHRxbxT9EOAM7xnMAzo57CUdu9hybR1aHa8hIAxnH3gU3HvV+EgUNcfwlC/yaSGkKP5Fc18U+GeWr+/Oiez66QJIknZgWjM8r8tL+AR1cmolZKnDvErbeGKgiCIAiCIAidqms2tF7fzgpvv8m1lUbJi+eHcP33h/h+bz5zItwY6du9m/iyLJNe1kBpna7d5b6OFvg49K0n0Ve3lJ46v5On8ruivKmcR3Y9jkE2MM17KpHO/5ptUZWN+udLkfSNAJj8p2AccQOmgKmttfONQy5BtfkFlEkrUR78CkXyKgwTH8MUfjFoeli+SFePIvUvFKlrUBTHIdXkt7uabD8Ik8dQZPcoTO5RyC7hSI0VUJbM56s34mvMZbpTGZbVaQzW6TisUZFcldztpEazwcidvxyhuFaHo5WaCYEd3wDeX3oAgBCHkI4bQzdVo0hehVSehlSZjqI8DWpykWQTwwBT/ncYpjyD7DkcrVLLDeHXcUP4dRhMBkoaS8ivLyCvLo/kqhSWZiznj5zfmT9yOl/tqGLRtmxmhLoc1wMhqaiOG76Lo7rJgKuNhtsnDuKy4Z5oVG0flgv3sGXRFVEcyq/hvS2ZbE+v5OcDhfwWV8QVI724dYIfrjbabp2/M6lJb+SOXw6zL6caG62Sz/9vKGEePesZojfpeWH/SxhlI7N8ZzLZa1K3tpcqM1DuXYwi/lckQ1ObZSbHQGTfsZjch4KNO7K1O7KNG1i5glLd8U7rSlDuXYQy9uu2yY2JDyH7T8bFwplFkz7kli23kVefx9XrrwFAo9Bw39B7uCzo0g77ZZyIcue7SPUlmBwCMI68udvbC4IgCH2PSGoMMH4+vdOQe3lcITIw1t/hpKf/SpLEs+cNRmcwsTyuiAd/S0StVDA9tP0vk4IgDEy9Fb8EQRBONxG/+obNqeXojTL+TpYMdu34qenxgU5cGu3BstginlqVzIpbRqJVddyMVpZlciub2JVVae7NkVVJeb2+w/WVEjw4PZAbxvr26Obe6VbbZGBTajkAF0Se3INJBpOBx3Y9SUljKf62g3hm1FPHFsoy6nWPIukbMXmNxHDeO8hOwcfvxNYTwwWLMA5bgGr9kyjKU1Cvexh549OYAqZhCpmDKWgmaDuptW4yIuXuQBm/FEXKH0j6hraLHQOR3SOR3Ydich9qLnXVzowQ2cYNXMPYsMePfTnVvBEzmPlbZxLe1MhhjS1JlcnM8p3Z5XOkM5i4+9d4/smoxEqt4OPLI0/4+Ttaemp0R7M0jDrUP8xDUZ5y/Ng1tmDUocjbjea78zGGX4ThnMfB3twLQaVQ4WXthZe1F6PdRiHLMvGVCSRWJqFx+gdLdRTxRXVsTa9g8r960KSV1nPd9+aERrS3HZ//39BOS7kN9bbj86uHsS+ninc3ZbI3p5pv9+Tz64FCFoz25qbxfjhaneBm+xmmN5r7UX60NZvCmmasNEqWXD2UKK8ezKxo8WXS16RVp+OgceDh6Ae6vJ2Uvxfl3k9QpK5pnZFhcgxE9puAyXccJt+xPZ/pYOOGceqzGEff3ja58etVGCY9gTHmLtyt3Ph40ofcvPlWShpLCbIL4uWYFwi2D+rRW0p5u1Hu+wwA47TnQdV3klzCqSWuvwShfxNJjQHGYOi8BuZRf8aXsCWtnOE+9oz1d2CQkyWSJGE0ySyPa2kQfhKzNP5NIUm8NDcUndHE6iMl3Lssns+uGsq4gG5OOxUEod/qTvwSBEE4m4j41TccLeUzO9y102TCozOC2JpWQUZ5Ax9vy+b+qYHHrZNf1cSSnTlsTi2noLq5zTILlQI/R0v4z9voDCayKhr53/oMYvNqeOWCMGwtzu6vbOuSStEZZYJdrAhz79kT50e9d+gDDpbFYq2y4s3x/8NGfSy5pIhfiiJ7K7JSi2HOe8iOx5/zf5P9JqC/9m+UB75AGfs1UlUWytQ/Uab+iazUYPKfbJ7hodKaGyDLcsvvJqSaPJSJvyHVFrbuz+QQgGnIJZh8x5kTGNru3Ywe7GrNvpxqUsuaMflNJKxwE2BuiN5VeqOJ+5cnsCWtAguVgsVXDWVEJzOF9pWeuEm48uBXKMpTkC0dMQ65DNkpCNk5GNkxCKxdKck4hFfylyjif0WZuAJFyp8YR9yIcew9YNH2vSVJ4vqwa3lk5+OsyvmN+SPO4dvdFSzals2kICckSSKzvIHrvoujskFPhKcNn10d1a3eNKP8HPh2YTQ7Myt5d3Mmcfm1LNmZy4/7C3hoeiBXjzq7augbTTKrjhTz4dYscivNsyHcbDW8c8kQhvv0vFTb4fIjfJH4FQCPDH+w83JNsglF2lqUexahKNh3bHyBMzCOuR3ZZ2yb5t4n7V/JDdWOt1HGfYNq6yuAhDHmTrytvfh62hfsK93PVO8pWCh7UEqsrgjVlldQJixtOZbpmIJm9N4xCH2euP4ShP7t7L5CFnpdQVERnh6dP3WxN7uKh35LwCjDikPm6eQedlrG+jvgZqOloLoZOwsVM8N6bzaFUiHx+rww9EaZtYmlvLE+neU3t3/xLQjCwNPV+CUIgnC2EfHr7NeoN7I1vQI4cX+Co+wt1Txz7mDuXhrPkh25nBfu1lpCpri2mcXbs/nlQCF6k/kpaLVCYpiPHWP9HRjr78gwb7vjyuyAeVbHTwcKeHltGuuSykgu2c/78yNOOllwKq0+UgLA3Ej3k5pZ8mf2X/yY9jMAz495Dn/bQccW1peh2vQcAMYJD3Sa0GilVGMcfSvGUbcglcSjSPkDRcpqFBXpKNP/Rpn+9wk3l7X2mMLmYYyYj+w18qRu+h6d/ZNaWo8pfBJDssw9Q5KrUpBludNzZzCZeHhFIuuTy9AoJRZdEcmYQQ4n3KaooYjcujyUkpJol+jjV2goR7njbfP+Jz2Baej/HbdKbq2M25x3kUbeiGrziyhytqPauwjlkZ8wjr4D4/Dr25T1muI1GX/bQWTVZuMUsB+NMpCDeTXsyqrCx8GCa7+NpbROR6ibNZ9fPQw7i+7PrpAkifGBTowLcGRzajnvbc4isbiOF/5KJdzDpkvJAr3RBHDCBusnwySbv9N+sCWL9DLzLB9nazW3TPDjyhFeWKg7nl3TmZSqVO7Zfj8G2cBU7ynM9DnBjXxZRpH+N8p/3kBREm9+SanBNOQSjKNuQ3YJ6fE4usTGDcOs15Bt3FD98yaqrS+DJGEccweulq6c53du9/dpaEa5/zOUO99D0tcDYIy6EsOUZ3p58EJfJ66/BKF/E0kN4TjFtc3ctyweowxjBpkvCA/m1VBU09ya4AC4MMq9SxdjO4t28e6hD1ArVNiqbbHV2GKrtsFWbYuD1oHZvjPxtDbP+FApFDw3ZzAbU8qIL6ojobCWIZ6dTA0XBEEQBEEQhJOwLa2CRr0JbwcLIrpY335WuCuzw1xYm1TGE6uTWHxlFF/szOX7fQU0G8w3TMf6O3DDWF9GD3LAStP5dbMkSVw10psIT1vuXRpPdkUjV3xxgOfPD+GioWffjZmS2mZ2ZZn7kMw9idJTyVUpvHzgNQBuDLueKf/pDaDa9CxSUyUm1yEYR93W/TeQJGT3SIzukRgnPoJUnmLuIVEUB0jmZIWkOPZLbYUpaJb5qe9eKmUT7Gq+8Z9WVo9p0CSC9TqUskyVroqSxlLcrTo+f0aTzOO/J/NXQilqhcSHl0UyPtCp0/fcW2J+In+IY3ibWS9Hqf55E6m5BpNbBKbIK0+4L9k9Cv3lP6PI2IByy4soylNRbX0Z5b7FGMfcgTF6IaitUEgKrg29huf3vcTK7F+5dPgb/LivlLc2ZlBRr6O4VkewixVfLhh20uWiJEliaogLkwc789jKJFYeLubJVcmsuHlUu0nDoyrqdVz99UEadEaWXD2UELfeSxrKsszGlHLe35JJUrH5hru9hYqbxvuxYLR3l+LAiWTVZHHntnuo1dcyzHkoL4x+tv2EmCwjZW1Gtf0NFEWx5pfU1hhHXI9xxI1g435S4+gu43hzeSzVP28ea+g95o7u7USWzZ+/jc+iqMoEMPfrmP4ismd0bw5XEARB6AO6ldT435tvsvL330lOScHSwoKxY8fy8gsvEBJizu5nZWcTFhHR7rbff/MNl15yCQAWNsdfNHzz5ZdcftllrX/fsnUrjz7+OAmJifj4+PDYI4+wcMGC7gxXaMfQyMgTLtcbTdy/LIGyej0hrtYsvnIoVholjXojB3OrW+sAVzcauHZM5/UJdUYdrx54nYKGwg7X+Szxc64LXcg1of+HhdICJysNM0Jd+CuhlKWxhTwjkhqCINB5/BIEQThbifh19lubZC49NSvs+IbGJ/L0eYPZmVVFfGEdk9/didE8MYPhPnbcNzWAsf49K6U61MuO5TeN4qEVCWxPr+TRlUnE5dfw9LmDT7oRd3eU1DazLLaIGaEuDHY7/qb4nwklmGTz8Z6oz97R7wT1hgYG2webfzkMxtPKgxpdLQ/veJRmYzPjPcZxS8RNbbZVZGxAmfgbsqTAcO5bJ25S3BWShOwSitEl9OT2001HZ2rkVjbRYOWNvX0AgfpGUjUakqqSOkxqyLLMM38k8/vhYlQKiXcvHcLkwc7trvtfR/tpjHI7vp+GVJqIIu5bAAzTXmhttP5fbeKXJGEKmoEpYAqKhGWodryLVJ1tbsy+ZxHGmDsxDruG8/zOZXHCEooaivAJOIL6gAeHC2oB8Hey5MsFw3C21nTpGLpCIUk8MTuY7RkVpJc18Mn2bO6ZEtDuukaTzAO/JZBZbm42f/13cXy7cDiBLj1sIt9ClmX+yTCXxDp6rDZaJdfH+HJtjE+vlJHLq8vn9q13U9lcSZhDKO9NfBtL1fE/d1LODlTbXmstMyWrLTEOvwHj6NvAqmufnVPBOP4BkGVUO95qSWxIGMfc3vmGunoUib+hjP0GRckRAGRrNwyTnsQUcak5ESkI7RDXX4LQv3Xrf9Zt27dz6y23MGrECAxGI8889xznz5tH7L59WFtb4+vjQ1Z6epttPv/iC9557z1mz5rV5vVPP/mEWTOPNURzsD82RTQzK4uL58/n5htv5KvPP2fT5s3cfuedeHp4MHOGqJHYUzkVjVQVZTN0SFiH67y5IYP9udXYaJV8cFlE65Mklmol4wOduvRE0L8ty/iNgoZCXCxceGrk49Tp66jV11Kjq6VOX8eh8sPElR9iccJnrMpazQPR9zPZ8xwuG+7JXwmlrDpSwiMzgk5qeq4gCP1DWno64aGn9waEIAhCbxDx6+ymM5jY3NLoelZY56Wn/s3VRstjM4N4YlUyRhkiPG24b0oA57T0DzgZjlZqPr1yKIu2ZfPh1ix+2FfASF975kaenies92RXcf+yeMrq9XyyPbvd2SLHSk+deJbGhvyNrMr+A4CN+ZtaX7dWWWGttqaksRRva29eGvM8Sulf1/26elR/PwaAceTNyB7DeuPQzggnaw3O1mrK6/Wkl9Uz3H8S4XmrSNVoSK5KYfJ/ZqcctfJwMUtji1BI8MZF4czo4mdUluVj/TRcR/13IaqNzyLJJowh5yP7jutwP+3GL4UKU+QV6MIvQZGwFNXOd5Gqc1Fteg7lnkVIF3/BgpCreTP2bVbl/syFQ19iWWwJPg4WfH3NMNxse7+Rs0NLSbh7lyWw+J8cZoW7tlu27b3NmezMrMJKrcDbwYLU0gau/S6W7xcOx8+p48TciezNruLdzZnsy6kGwFKt4JrRPtwwzrfXmpcXN5Rw57a7KW0qJdAukA/PeQ8b9fHHp0hYjvqPuwCQVRYYo6/FOOZOsO69stEnwzjhQUBGteNtVFteBNmAMepqsHQ8LjkhlSaaExkJy5B0dQDISi3GETdgHH8/aM7esnzC2UFcfwlC/9atpMaqFSva/P2zTz7BNyCAAwcPcs7EiSiVSjzc215k/75qFZdecgk2/5md4WBvf9y6Ry35/HP8Bw3i9VdfBSAsLIwdO3fy/ocfiqRGDxlNMrf/fJiq+kbua7bnoqHux9UP/TO+hK925wHw+oVh+Duf3NMqdfp6Pk/8EoBbhtzERM8Jx60jyzLr8tbz3qH3KWgo5KEdjzDOfSwPDLsPb3st+dXNrEsq48Ko0zs9VhCEs09DY+OZHoIgCEKPDOT4VVxjLk+0K6uK3VmV5P+nYfZRHnZavlsYfcKn/U+VnZmV1DUbcbXREO3TvebPAJcM80CjVGBroWJy8MknM/5NqZC4a7I/AB9szWLx9hzmRLid0tkasizz+c5c3t6YgVEGa42Sep2RR1cmcTCvhidnBaNRKcgqb+BwQS1KCc4bcuKkxrrc9QCM9xiHo9aR1Oo0MmsyqTc0UG9owEJpwZvjXsNO0/b8K7e/jlSTj2zvi3HCw6fsmE+XYFdryuurSCttYNigSYRnLOd3Om4WXlan49V1aQDcNyWAORFdL/GVU5dLSWMpaoWaoS5RbZYp0tehyNlubro++ekT7ueE8UupxhR1Fboh81HE/4Jq53tINXmo/ribixas5vPEL8mvL+C64VmEuEZxXoQb7qcgoXHU7HBXZoS6sD65jCdXJfPzDcNRKY59512fXMbif3IAeGluKOMCHVn4TWxrYuO7hcPxduh6w2qjSeap1cksjysCQKOUuHqUNzeP98PFpvdmopQ3lXPHtrvJry/A18aHj895Hwetw3HrScVHUK19yDy2IZdimPwk2Jx9ZeuME8xjVO14G9XWV1FtfRVZUoClM7KVi3k2ib4BReGB1m1MjoGYhl2DMfIysOzeg5bCwDWQr78EYSA4qXl6NTU1ADg5tj+t+sDBg8QdOsR1Cxcet+y+Bx7A28+PiZMn89U33yDLcuuyXbt3M23q1Dbrz5gxg9179pzMcAe03MpGqpsMlDWaL7zO/2Qvvx8uxtjSvDC9tJ4nVyUBcPN43y4/AXQi36V8T5WuCj8bPy70n9vuOpIkMdt3Jktn/8z1odeiVqjZWbyLq/5ewPDQLACWxnZcukoQhIHDxvr4sheCIAh9wUCLX/GFtTz3ZwqzP9rNpPd28sjKJJbHFXWY0AAoqmnmmT9S2nwnOF2Olp6aGebSo2SBJElcEOXOlMHOvZrQ+LeFMd7YaJWklNazIbnslLwHQG2Tgbt+jeeNDeaExkVD3dl2/zjumjQICfhpfwFXfXWQ/Kqm1lka4wOdTlhKqEZXw86iXQDcG3U3z49+hh9mfMO2izbx88wfeCXmRb6c+hmDHQa32U4qOIBy/+cA6Ge+3qYZdV/Vplm433hCdQYAkisS2l3/pbWpVDUaGOJhww3jfLv1Xkf7aQx1jsJC+a8b9UYdyk0vmP846hZw8DvhfroUv5RqTEP/D91165Gt3VFUZmC9dzFXBV8BwI/p37EwxvuUJjTA/LP4zHmDsdUqOVJYyze781uXZVc08NjKRACuGePN+ZHuOFlp+GpBNAHOlhRUN7Pw21iKapq69F4m+VhCQynBVSO9WH/XWB6fFdyrCY3ihhLu2nYv2bXZeFh5sGjSh7hYtjProrEC9cqbkAxNmPynYDjv3bMyoXGUccJDGCY9idySoJBkE1JDKYqyRBQ521EUHkCWlBhDzkd3+c/ob9yKcfStIqEhdMtAu/4ShIGmx4UdTSYTDz36KOPGjSOigz4aX339NWGhoYwbO7bN68889RRTJk/GysqK9Rs2cO/991NfV8edd5gbRRWXlODm1vYpFHc3N2pqamhsbMTS8vgnuJqbm2luPvZFqba2tqeH1i/5O1ux/q4Yvt2dw+e7C8iuaOThFYks3p7NbRMH8fG2bBr0JmL8Hbhvavv1R7ujrKmc71N+BODOyNtQKU78UbNSWXFn1O1cGDCX/x18i53Fu0g3/YbE7ezOqiKnorHH04EFQegf/P1O/KVbEAThbDWQ4ldxTTNXfXWwtVG2QoIIT1tiBjkwNsCRMHfr4xIHxTXNXPnVQXZkVrI8rohLoz1P23gNJlNrkqC7padOJzsLNQtGe/PJ9hwWbctmRmj3en90RVJxHfe0NCdXKyWePncwlw/3RJIk7p4cwDBvOx5ekciRwlouWbKvddb3BZ2UntqUvwWDbCDILogg+8DW11UKFUH2gW1ea1VXgmrN/UjIGIfMRw6Y0otHeuYcbRaeWloPFkGEOoUB5RQ1lVHVXI2D9lhJ5vVJpfyVUIpSgpfnhh43y74z+0rN/TT+W3pKeeALFFWZyNZuGMfe3el+uhW/tHYYZryMeuVNKPd8xOVX/8bXKisyajLYVri9wxJb3WEwGVBKyg4//+62Wh6dGcxTq5N5b3MmM0JdcLXVcPev8dQ2GxnuY8cjM4Ja13ex0fD1gmgWfHOQnMomrv02jm8XRp+wRJYsyzz/VyrL48xlwd66ZEins5W6S2fU8UPqT3ye+CWNxkacLZz5+Jz38bBqJ1FhMqJefSdSdQ6yvR/6uR912CPlbGKMuRNjzJ1g1ENjOVJ9GTSUITWUg7EJU+D0szoxI5z9BtL1lyAMRD1Oatx7//3EJySw8e+/213e2NjIz7/+yuOPPnrcsicee6z1z9HDhlFfX8/b773XmtToif+9+SYvt5Sr+rfYw4extrZmWGQkKWlpNDY1YWtjg5+vL/GJ5ic1fL29Mcky+QUFAEQNGUJGdjb19fVYWVkRFBDA4fh4ALw9PVEoleTmmcs0RYSFkZufT01tLZYWFoQOHkzs4cMAeLq7o9VqycoxT3ENDwmhsKiIqpoatBoNEeHhHIiLA8Dd1RVra2sysrIACA0OprSsjIqqKlQqFcMiIzkYF4dJlnFxdsbBzo60zEwAggMDqaqqoqyiAoVCwfChQ4k7fBiD0YiToyMuzs6kpJmnLUdp9XxziS/f7itgdXozaWUNPLTCfB6crZS8fF4AcYcOAeb/AJqamigqMT+FFR0VRVJKCk3NzdjZ2uLj7U1Cknl2h5+PDwaDgYIi89Tbtca1NBob8df6493gQ3NzM0dazrePlxcAeS3nOzI8nKycHOrq67GytOTFUc9z7p/nk1efQ6RfNYdzHPhwbSxXhFsyJCyMvJbzbaHVEhYS0nq+PdzcsLCwaD3fYSEhFBUXU1VdjUatJioigv2xsQC4ubhgY2PTer5DgoMpKy+norISlVLJsKgoDh46hMlkwsXJCQcHB9IyMsznOyCAqpoaysrLUUgSw4cNI+7IEQwGA04ODri6uJDccr4D/f2pr6+nuNT8BOCIYcOIT0ykWafDwc4OTw8PElNSWs93c3MzhcXFrec7OTWVxqYm7Gxt8fX2Jr7lfPv6+GAyGskvNM9iiYqIID0zk4aGBqytrQkcNIjDCeYnvry9vFBIErn55ieVIsLDycnNpbauDksLC0KCg4k7Ym645unhgUatJjs31/yZDQ2loLCQ6poatFotQ0JDOdjy+XB3c8PK0pLM7GzzZ3bwYEpKS6msqkKtVjM0IoIDcXHIsoyriwt2trakt3xmBwcFUVFZSXlFBUqlkuioKGIPH8ZoNOLs5ISToyOpLf15ggICqKmtpbSsDEmSGDFsGIfi49Hr9Tg6OODm6kpyaioAAYMG0dDYSHHLZ3b40KEkJCfT3NyMvZ0dXp6eJCYnAzDI1xedXk9hy2dWxIhjn9m6ujpKysw3eEZGR3M4Ph6dXt9aNjDpX5/ZnsaIoZGRpKWn09DYiI21Nf5+fp3GiPzCQjzd3QkOCuJQy2fWy8MDlUpFTsv5FjFCxAgRI8yf2YEYI45eR5yNMaKwpAS1ynzZ3d9jxKLdpTQbTAyyU3DftGC81A0Ym+rQanUMCXDoMEbcNt6L97bm8dKaFFwMpUweNfS0xIisRi1VjQZs1BJBdjJ5BQUdxgiVg4pbtt6Gv3YQjw9/FC0WpzVGjHPS8LVaQXxRHV+s28d5Q316LUbUWXlx20+H0BnB3VrF63OD0DQUcyCupDVGWNdV8OJEaxYfMXGk0PwAmVYpEeNj2fqz0V6MWJ60AoBRNiOpb2joNEYoyhIZEvcCisYSdBpHYl0vxausrF/ECFOV+Wc5rbSeg4cO4W0Rjq9uE7lqNav3/0m4VTjBAQHklVby5O/mn40bx/mhL89mf3HXY0RjcxO7i8xVDmyr7dgfG4u/nx/66kK8t78JgG7CIyRk5HUaI6prapg4blw3YsR08DwH+8JtWKx+hEtHX8w3ad/z4f5FBEuD0Wo0nV5H6GU9B4wHKNAVUFhdSK2xjmZFM5XNlTQYG9BKWrxtvbE2WOOsdmaQvR/+DoOwq7XHRmnDrKBAlnpYEFvUxH0/72ewlzPJJfXYaSQeGutAU0M9h/8VI5pra3lohIYXdujIqmjk8iV7WDDEgqkhLri7ubW5jqhvaODNTdmsydQhAXePtsNNV0BaRl2vXUfUOlfz5sF3KNK1fN6dorjU5lJK0yvQeGqPixG6tU/jmrUFo9IC3YVLOJicDWT3neuIpJR/XUcEHosROg1NBQXiOkJ81+jxd41/du/G3s5OfNcQ3zVEjOhjMeLosXRGaqqr6/Yc7/seeIBVf/zB+rVrCfD3b3ed73/8kdvuuIOMlBRcXU/81NNfa9Zw8fz5VJeXo9VqmT5rFsOjo3nzf/9rXefrb7/l4UcfpaTlQ/Vf7c3UCAoNpaSgADu77tfG7a/2x8YyMjoagJomPV/tyuPL3XkYTTJfXzOM4T72J95BF+TW5TJ/7ZUYZSOfTPqIUW4ju72Ph3Y8yuaCLUx2uYzV20biaqNh871j29REFQRhYPl3/BIEQTjbVDboya1qJMzNBo2q7fXKQIlf5fU6pr2/iyaDic+vHsrEoK6XCTGYTFz+xQHiC+uYFebCB5dFnsKRHvPcnyn8uL+A+dEevHxB2AnXXZL4BZ/EfwqAt7UXr499hTDHE2/T215fn84XO3MZ7mPHj9cN75XZGrVNBuZ8soeSWh0Tgxx586IhJ2xurDOYeHldGj914bxVNFVw3h8XYJSN/Hbur/janLiEkiJtHarVdyDpGzA5BaG/5BtwPPlZ5GeLqkY9MW/+A8D+RyZiW3qAx9ffyDoba+6JvJOFYdcA8NTqZH49WIi/kyUrbxmFhbp7T92nVqVy1fprsFRasnHeOtQK87+nat2jKOO+xeQehf6av45rzNyeHsWv2kI0X0xG0tVRNPlx5uYtpdnU3OXvhi/tf4UVmb937z0BPxs/fp39I0pJSW5lI3M/2UvTv2aNfbVgGDH+7ZfOBnPJ5gXfxFJUY76vMNzHjnunBDAuwLyNLMu8uSGDJTvNN1xfviCU+b04syyvLo+34t5hW6H5M+Js4cy9UXdxnt+5Hf6sK5JXof79VgD0cz/GFH5Rr41HEPq6gXL9JQj9TU1NDW5eXp3e0+/WTA1Zlrn/wQf5fdUq1v31V4cJDTCXnpo7Z06nCQ2AuEOHcHR0RKs1T/EcGxPDmrVr26yzYeNGYsaM6XAfWq22dXuhY0czjmCexn7PlABuGOdLk97Ua7U/F8V/ilE2Mt59bI8SGgAzfWewuWALaY07cLCKobROx7a0CqaGtFM/VBCEAeHf8UsQBOFssi6xlMd+T6JeZ8RCpWCkn31ruaUIT5sBE7++3JVLk8FElJctEwI7vnHYHpVCwStzw7j08/2sSypjbWIps8NPbTkokyyz/mjpqS681/q8DQBYKC3Iry/ghk238MjwB5nnf+Ep66XxXzeM9eG7PXkczKthV1ZV683Wk/HGhnRKanX4O1ny0WWRnd5A16gUPD8nhJvH+3baI2Fj/iaMspFwx7ATJzRkGeW+T1FufgEJGZPfRPTzPgULh+4f0FnMwVKNq42G0jod6WUNDPMcTphRYh2QXLwXwq5hZ2Ylvx40P9n48gWh3U5oAOxtKT013GVYa0KDhnIUh38CwDD1+S4lNKCH11+2nhgmPYF6/RO473ifC8f9H7/mruG5fS/y1dQl7feEaLE6+09WZP6OhMS1odfgae2Jo9YBR40jjloH7LX21OhqKawvpKChkIL6AgoaCtlWsJ2cuhx2Fe1mgud4fB0tuW9qAK/9bX7a+oFpgSdMaAD4Olry280j+WxHLt/vzedgXg3XfRdnLtE8JYDt6RWtCY3n5gzu1YTGqqzVvHLgdfQmPUpJydWDr+TG8BuwUXfcE0AqTUL11/0AGEbdKhIagvAfA+X6SxAGqm4lNe69/35+/vVXfv3pJ2xsbSlqmXJib2fXps9Feno62//5h5XLlx+3jz/+/JPikhJiRo/GwsKCDRs38r833+S+e+5pXeemG29k0eLFPPHUU1x7zTVs3rKFZcuXs2LZsp4epwAkViaxo2AnN7pd3+Z1G60Km17KByVWJrEu928kJO6KuvOE6yqO/IJy94eg1CDbeoKNJ7KdF7KtJ5OsXNAqteTX5zM9opEVe9X8erBQJDUEQRAEQThr6I0m3t6YwRe7zFPOLVQKmgwm/smo5J+MStiUibVGyTg/a1672Albix5Xfj3rVTXq+X6feUb1HecM6tFN/jAPG24e78ei7dm88FcKMf4OOFh2PGPgv7aklfPDvvzWfh6daTaYKK3TYatVdpocyKzJJK06HZWk4udZP/Bm7NtsK9zOS/tfJa7sEI8OfxgLlcUJ99EbXG20XD7Ci+/25rNoe/ZJJzV2Z1Xy8wHzDfQX53bvBrqPQ+f97tblrgdgls/Mjlcy6lGtfwLloe/Nfx12DYbpL4Gy6//2fclgV2tK63SkltYzzNuOUMcQMOWRXJlEo97I03+YS5NcNdKLUX4OPXqPo03CR7kd66ehTFiOZNJjch+K7Du2o017jSl6IaaE5SgK9nFXXiq7bfzIqcvh/h0P8enkRViqjv/8pFWn8+qB1wG4KfwGbo24ud19O2odGWTbtlb+W7Hv8GPaz/yWuZIJnuMBWDjGh9zKRqw0Sm7qYqN1JysNj84I4voYHz79J4efDhSwO6uKq7462LrOE7OCuWqkd5f21xW/pi/l9YPmsmAxbmN4OPoB/O38T7xRQzmqFTeaZzX5TcQ4+cleG48gCIIg9AXd+mb16ZIlAMw677y2r3/yCQsXLGj9+1fffou3tzczpk8/bh9qtZrFn37KI489hizLBAUG8vqrr3Lj9cdutAf4+/Pb0qU88thjfPjxx3h7e7Poo4+YOWNGtw5OOCazJpNrNlyHAgXTg6bhbzuox/vSGXXk1uXhZOGIg8ahzZfWDw9/DMC5frMIcRjc/g6MelSbnkN58Mtjr5UmtFnFAZgUHM3fNGPlcBgYwebUckrrmnHtrQyMIAh9Sl5BAe5uvduEURAEoadKapu5f3kC+3KqAbhhnC8PTA0gu6KRXVmV7MqsYnd2FTVNBtan1fDY70l8eFnEaXui/3T7dk8eDTojYe7WTB3s3OP93HHOINYmlpJR3sDrf6fz6oWdl3cymmTe35LJJ9tzevSes8Nd0XTShHl93kYAxrrH4G3txVvj/8fXyd+y6MhiVmX/QXJVCq+Pe6XT8kq94aZxvvy833yjdX9uNSN9e1Y+1nwD3Vwn+cqRXowZ5NCLo4SSxhIOlsUCMNP3+O+FAOjqUf92PYqc7ciSAuOUZzGOvAn66c8JmJuF78isZH9ONUO9bHF2HA/lv5Ctr+HVv+PJrWzCw07LQ9PbaaDeBQdLY9lTsheA0UeTGrKM4vAPABiHXt2t/fX4+ktSYJj9JuqvZ+KUsYkPZr/GtVk/kFiZxJO7n+GN8a+hlI4l0er19Ty66wmajc3EuI3hpiE3dOvtLg68iB/TfmZb4XZKG0txtXRFqZB45ryQ7o8dcLPV8tS5g7lhnC+LtmWzLLYQowwPTQ/k2hifHu2zPd+l/MC7h94H4KrgK3hg2H2d/z9RlY166f+ZG77beaO/YBEo+m/SXBB6Snx/FIT+rVv/8zXV1XVpvRefe44Xn3uu3WWzZs5k1swTPKnTYvKkSezesaM7wxNOIMAugHM8J7KtcDvvH/qQtye80aP9yLLMwzsf458i87+NRqHBzdINdys37NS27C7Zg0pScVvEre3voL4U9e+3oMjbDYBh3P2YvEch1RYg1Raaf68pQJG9lXMLUvjb3YV9FVuJ9plMbF4tv8UVc8sEv/b3LQiCIAiCcBrsza7ivmXxlNXrsdYoefXCsNZSScGu1gS7WrNgtA9Gk8yOzEpu++kQ65PLWLIzl5vH97/rmLpmA9/sMTf3u21iz2ZpHKVRKXj5glCu/uogy+OKmBvpxoTAjntzVNTreOC3BHZmVgFwxQjPbt2cVysVXSqV9XdL6akZLTfnFZKC68OuJdIpgid2P01KdSrXbLie50Y/wxSvSV1+fzBfXzcaG6nV1VGnr6PZ2IwJE7IsIyNjks1/drV0wcfGB097Cy4e5sEvBwtZtC2bJVcP7db7HfXBliyyKxrxsNPycA9voJ/I+ryNyMgMdY7Cw8rj+BV09aiXLUCRtxtZbY3hgkWYgvr/Q2whbuZyQsvjilgeV0SA5IlbsIESlYrfE3YDg3l+Tgg22u7fpN5RtJOHdz5Gs7GZMW6jCXUw39CXCg+iKEtGVlmc1hJFsksIxpi7UO18h4Btb/HWxYu4fddjbC3cxjtx7/FQ9APm9WSZlw+8RnZtNm6WrrwU83ybhEdXBNoFEO08jNjyOFZmrup2UqQjXvYWvDg3lFsn+lFWpyO6F3pQHvXvPj3Xh17LHZG3dRo/paI41MuuQWooMyc05v8AVj1PJAuCIAhCXyXS+QPIvVF3saNoJ1sLt7GvZH+P+l2szv6Df4p2ICEhI6Mz6cirzyOvPq91nflBl+BtfXztQqngAOqVNyPVFSJrbDGc/wGm4FkA/LdbvWrFTUxK+wsrFBQ2FLEgrJbYPFgWW8jN431bL/ZqmvTsya7mcEENI33tmRQsLugEob+KDA8/00MQBEHgu715vLI2DaMMIa7WvH9ZBAHOVu2uq1RInBPkxOMzAnlxXQZvb8wgysuWsZ3UdT8Tmg1GvtiZh7eDBedHuKFUdD0x8f3efGqaDAS5WPVKH4wRvvYsGO3Nt3vzeXp1Mo/MCGKMvwNOVm37v8XmVXPvsgSKapqxVCt4aW4ocyPdT/r9/yu9OoOMmgzUCjWTPc9ps2y02yi+n/E1j+16kkPlh3loxyMsDFnAHZG3oergyenUqlQ+TfyclKoUanV11BvqMcrGTsehlJR8NuUThjpHccsEP5bFFrItvYLDBTVEeXXcRLE9hwtq+HJXS2+A8wb36AZ6Z9bl/g3ALN92HmjT1aNedo05oaG1Q3/Zj8iew3t9DGejKYOdCXUzl6ACqJZ9GaGTKFFBmO0hhg+bypQezHbakLeRJ3c/g0E2MMFjPK+PewVFS98M5eEfATCFzAVt9z4rJ3v9ZRx7D4rkVSgq0hgZ+wsvjHmWx3Y9yU9pv+Bj7c2Vg69gacYy1uX+jVJS8krMSzhqexYjLwm8iNjyOFZk/c714dd2OzFyIj4Oll0qudYVsizzcfwnfJn0NQC3DbmFG8Ov7zShocjYgOr3W5D0jZhch6Cf/x3YtJMwFAQBEN8fBaG/E0mNAcTfzp+pTlNYX76B9w5/wNfTvmi90O2KssYy3o57D4C7o+7kqsFXUNJYSklDCcWNxRQ3lqA36bl68JXHbas49AOq9U8gGXWYnIIxXPwFslNwh+9lnPAQ2tS/mFJXy5821jRpDmClHkVWRSNf7c6jtE7HrqxKEovqMP0rI3JtjA8PTw9E3UkJAUEQ+p6snBxCB3dQ1k4QBOE0SCyq5aU1acjAhVHuPD8nBCtN5zfNRjk2cfFQd347VMwDyxP47aZRuNudPeU0dUYT9yyNZ3NqBQCLtmVz92R/zh3iiqKTm2wNOiNf7jY/3HLrBL9O1++q+6cFsCGljPzqZu5dZi5TGuZuzVh/R8b6O5Bb1cT//k5Hb5IJcLbkg/mRDHbruKHuyTjaIHysewy2GtvjlrtZuvHp5EW8d+hDfkz7iW9SviO+MoGXY17ExeLYzem8unwWJ3zKmpx1yMc90mNOWtiqbdEqtSglBZIkIaFAIUnUGxoobyrn5f2v8f2Mr/F1tGRupDsrDxfzyfYcPro8ssvHozeaeHJVMiYZ5ka4nZKedfn1BRypiEeBghk+/yk9pWtoSWjsQtbYDqiEBpj7ovx+6+g2ry1eOYjd+jwiPAt4dGbH35E6sjrrD17Y9zImTMz0mc4LY5471iBcV48icQUAxqFXdXvfJ339pdKay1D9eDHK+F+YFTyL/Kg7+eDwR7wV9y51hno+TzSXJb476g6iXYb1+K2m+Uzlzdh3KGooYmfRbia29NY4m8iyzDuH3uOHVHPT9nuj7uaa0P/rdDtF3Peo/n4MSTZiGjQJ/bzPQHt8PBIE4Rjx/VEQ+jeR1BhgZtvOZmf1ThIrk1iTs5Y5g87rfKMWr8e+Sa2+lnDHMK4efCUqhQpva692Z2W0kk0oN7+Iat9iAIzBszHMeb/TCzDZNQxT+DxmZ6/lTxtrthZt4rwh57IsroTX/k5vs26AsyUBzlZsTCnn6915HC6o4d1LIs6qmwWCIJy8uvr6Mz0EQRAGMFmWeX19OjJwbrgr/5sX1uUyS/UNDTw7J4rE4jqSiuu5d1k83yyM7rSPw+mgN5q4f1kCm1MrsFApsFAryChv4P7lCXyy3Zp7pgQwPcS5w2P9+UABlQ16fB0tOD+y9+pWW2tUfHNNNF/vzmN3VhUppfUkFZt/fbX72Azhc8NdefmC0FMy0wDM/+5Hkxoz/3tz/l9UChUPRt/HUOdIXtz/CvtLD7Bg/bW8NvYlfGx8+TzxS5Zn/NY6I2OmzwzmB12Ck9YRG7VNazKjo/Nc1VzN/LVXkF6Tzrcp33N92LXcOtGP3w8Xsz65jDfWp3PTeD8crTpvrr1kRy7JJfU4WKp4cnb3b6B3xd8tDcJHuo5ok9hB14B6+b8SGpf/NKASGh0J8RgDuXkkNxZ0e9uf0n7hzdi3AZjnfwFPjHyszQwFRfIqJH09JocAZJ/uNwjvjesv2WcMxpg7Ue3+ENW6h1l47Uby6vL5LXNFa/mlKV6T+b/B3ev38V8WSgvOHzSHH9N+YnnGb2dNUqO4oYS9pfvYV7KPvSX7KW4sBuDh6Ae5IviyE28syyj/eQPVzncBMEZcjmH2G6Ds/GddEAY68f1REPo3kdQYQBSHf2RoUTLXhV3LR0cW8dGRT5jmMxULpUWn267P28im/M0oJSXPjHyyw+n0bRj1qNY8iDJhKQCGCQ9hHHcfdHF2iHH8g0xI+h0bk4mSxlLGDavm72QVtlolYwMciRnkwFh/x9bkxfrkMh5bmciB3BouXrKPty4ewriAtlOXZVkmt7KJPTlV+DhYnJXlHwRBaJ+VZe9M+RcEQeiJrekV7MysQq2UeGh6YLf6RlhZWmKpVvLB/EguWbKPg3k1/O/vdJ4698w+PWgwmXh4RSLrk8vQKCU+viKSYd52fL07jy93mW983/nLESI9bbkuxodxAY642BwrAdVsMPL5TnMJo1sn+KFS9G6SxtfRsvUcldXp2JNdZW7CnlVFVYOeOyYN4toxPqe0+Xp6TQaZtVloFBomdaFXxkzfGQy2D+aRXY+TUZPJrVvuRK1Q02RsAmCc+1jujLyNMMfOG6D/m4PWngeG3csze5/ns4TPmeEzjSAXX64c6cWP+wtYsjOXH/cXcP1YH66L8cXW4vhr9QadkR2ZlXy0LQuAp2YPxslac9x6vWFdnjmpMdP3Xz0ydA2oly9EkbtzQM7QOJHQ4AsgdzlpChP6mjzUdl1rRP1F4ld8HP8JAFcFX8kDw+497uehtfTU0Ct71IC9t66/jBMeQpG5CUVJPOp1D/HoRV+YZ1QU78Lb2ptnRz3VKz/LlwTO48e0n9he+A8ljSW4WXY92SrLMofKD9NsbGak24iTKl+VXZvD96k/sq9kHzl1uW2WaZVaHol+iHkBF5x4J3UlqNY+iDLDnFg1jLsP44SHe/TvKAgDkfj+KAj9m9RUV3f83Od+oKamBjcvL0oKCrCz617d0P5IKklA/fVMJGTqxt3HRdX/UNxYzF2Rd3Bd2MITblutq+aytVdS0VzJTeE3cFvELZ2/ob4R1apbUaavR5aUGM59G1NkJ0+htEP11/08U/Q3v9vacFnQfB6JfvCEF7vZFQ3c/Ws8ySX1KCS4b0oAF0S5syfL/CV4d3YVBdXNACgkeOOi8FNSe1kQhN6nNxhQq0QuXhCE089gMjFv8T7Syhq4YaxPt8vD/Dt+bUop47afjwDw1sVn7jrEaJJ57Pckfj9cjFoh8eHlkW3q+Fc36vliVy7f7M6jQW9qfT3YxYqxAeYSUJnljby1MQNPOy3r7oo5rTNPZFk+pcmMoz6J/5QliV8w2WsSb43/X5e3azA08Mr+11iTuw6ASKcI7oq8o0c97Y6SZZm7tt3L7pI9jHEbxUfnfADAptRy3tucSVKx+YlUewsVN47z5YqRXqSW1LcmguLyatC31G2dHOzE4iujTsk5zKrNZv7aK1BKStbO/QMHrQMYdaiX/h+KnH+QNTbmhIZXz89FfyPLMtOXjqdGkvnR/xoGj7qz021+Sv2ZN+PeAeDm8Bu5ZchNx/17SuWpaL6YjCwp0d22D2y6H2968/pLKktG/c25SMZm9DNfoz7yMv7KWct4j3F4WHVjbI0VSGUpSGXJKMqTzX+uSMfkNx7D+R9w85Y7OFgWy61DbubmITd2uruq5ipWZ//Bb5m/k12bDUCArT83ht/ATN/p3U5uJFQkcvf2e6nW1QCgQEG4Yxij3UYxym0k0c7DsFCd+MFCRepfqNY+jNRYgazUYpjxEqahnZepEgThGPH9URD6pq7e0xdJjQFEuesDVNteBWDl0Hk8VXsQa5UVv527FCcLpw63e27vC6zO/pMAW3++n/ENGmUnT3Q1VaNefi2K/D3IKgsMF3zS2hC826py2P39dO50d8ZZbcufF67p9KKyUW/khb9SWR5X1O5ytULCx9GCzPJGlBK8c2lErzS1FATh1NofG8vI6OgzPQxBEAagXw4U8PQfKThYqlh3Zwz2lt0r+/Hf+PXOpgw+2Z6DSiHhYHnyX7YVCokID1vG+ptnsYa4W5+wt4VJlnl6dTJLY4tQSvDe/AhmhrV/LVRRr+PrPXlsTasgsaiunU4Q8My5g/m/0d4nfRxnG1mWmb/uSrJrs3lpzPOc6ze7/RUNTSgPfIlsYY8pbB5orFu331ywBY1Cw3iPcb2SQMiry+OKdf9Hs6mZ50c/y/ktpWRNssy6xFLe35JFellDh9t72mk5J8iJ+6cFHNd4vbd8lvA5ixM+Y7zHON6faL7prtz1Pqptr4mExgncvnIue/VlPKf2Z+68n0647trcv3lq9zPIyNw25BZuGnJDu+spN7+Aau8nGINmYrjk6x6Nq7evv5T7PkO16VlktSX6heuQnYK6tqG+AeWhH1DuX4JUndPhaoZpL7Da1Yen9zyHu6U7v89Z3u73R1mW2V96gOWZK9iUvxm9SQ+ApdISpUJJnb4OgEG2g7gx7Dpm+c7sUrWC2LI47t3+APWGeiIch3Bj+PWMcB2Ojdqma8epq0O18RmUh82fAZPrEAznf4js2r3ZXYIgiO+PgtBXdfWevkhZDiDGsXeTW1xOQMqnXHBoJd8HR5BoqOWzxM95dPjD7W6zo2gnq7P/RELi6VFPdp7QqCtBvfRqFKUJ5mnll36D7BPT80E7+DEm+GLsqjZRTi0HSw4yyn3UCTexVCt55YJQRvja8eKaNPRGE5GetubGkgEODPexx0Kt4MlVySyPK+KB5Ql8cFkE005Bk0RBEARBEPq2ep2B9zZnAnDHOf7dTmi0557JASQX17MptZyyev1J7w+gpLacTanlADhYqojxN5fqbC9psj2jkuVxRSgkePPiIR0mNACcrDXcPzWQ+6cGUtmgZ29LCajdWVWklTXg52jBpdEeXRqjLMs0m5rRKDQouliO9ExKq04juzYbjULDOZ4T211HKktGteoOFGWJAMibnsM05FKMwxaAWwRTvaf06ph8bHy4acgNfHRkEe/EvccEj3E4aB1QSBLnDnFjZpgrf8SX8MGWTHIqm3CxVhPT0lx9rL8jvo4WvZJcqdXVsjxzBXqTHietE05aRxy1jjhbOLEu928AZvnONK9clY2ypR+AYeZrIqHRgRDnSPYWbSa5MpG5dSVg037ZpN3Fe3h2z/PIyFweNJ8bw69vf4dGHcp4cxlg09CT61XRm4wjb0SR/jeKnO2o/rwH/dUr4UTJguYalAe/QrnvU6TGitaXZTsfTC6hyM4hyC4hSNV5qHa8hXLLy0z/v5W8qbGjuLGYnUW7mOg5oc0uj5Qf4eUDr5Fandb6WrhjGBcHXMRs35nIyPyU9gs/pPxEdm02z+x9niWJX3BD2HXM9pt1rAn7f+wp3ssDOx6mydjECJfhvDPhTazV1l0+N1LeHtR/3oNUnYOMhHHM7eZyUyrRK1IQBEEQ/p+9u46P4toCOP6bWYm7u6IhuGvRAoVSKNIWCqXu3lKj7l7qLrQFWqBCKaXF3T0EQogrcc/KzLw/lobmJUAIQRLu933yyevuyN0lOZm9Z+45/0+s1LjEZOfkEJTzN4Z/HmO7vR03Bvihk3TMH/49Ea4RtbatsFQw5Z+p5FTmcG30NTzU+f5THlvK2Yvh99uRSlLRHH2wTPoRzTfm7AddlsVLi0bxi7MDV/v04vFB7zV412qLglXV6m0eqagaj/4Wzx8HjmHQSXw0uQMDo73qOYogCBeD7JwcAvwbNnEmCILQVOasSebD9amEetiz9I6ejSqxVF/80jSNpIJKrMrZX4pXWhR2pZewJaWYHanFtcpFnYwEvDquLVd1bHxcLaw0Y6/X4Wg8fWkWVVO5e/19bDu2HQC9pMdOZ8ROZ4dRZ4ennSdDgi5jRMgwAp0CGz2mpvThgY/5+tC3DA4cxBt9X6v9pKYh7/kW/ZrnkazVaI5eaHZuyEVJNZuoAd1QOk9Djb4c7NxOXQdfVaA0A6koCamqyPaYJAFSzXfNIwLNLxaramXqihkcLT3K2LAreKbH7DqHs6oqBRUWfJ2NTV5i6lDRYWZteZzMipM3tTbIBv4ZuwxnvRP6RdejS16FGtofy+QFoh/ASSxL/YvZ258lwGrlBZcudL7i8zrbHCo6xK1r76TSWsnw4KG82Ov5k65ilxP+xPDbzWhOvrbSUw3piViPc3L9VZqJ8ZuhSKZSW9/Fvg/W3aayAN3Oz0ikmG4AAJyOSURBVNHt+hrJXAaA5haGtdddqO2uAuP/rXzQNPSLp6NLWonq057XOo3ix6M/MyCgP+/0e9N2SGslHx34hAWJP6Oh4aR3ZGTo5YyPGFdvn5tySwU/H13I9wk/UmIuAcDH3ofJ0ROZEHkVbka3mm03ZG/k0c2PY1bN9PbrxZt9XjttiakaihndprfRbf0ASVPRXIOwjJ6DFtKnYfsLglAv8flREJonUX5KJDXqlZefj4+3N/KBBej/eoh7fTxZ4+RIR89Yevh2p9RSSrGphFJzKVmVWaSXZxDoGMCCET/ioK+nyZK1GvnQEnR7vkXO3gXYLjbNk+aBR3iTjXv78ru4o2wnHprEsgnr0OvO/i5JsH3ge3DRQZYfysdOL/PpNbF1mosLwpkoN1l5Z3UyBp3EQ0MiMZzH+uIt3b/xSxAE4XzJLTUx4sOtVFtV5kxsfLnK8xm/LIrK/qwytqQUsSejlGpr3QSHXpaY3CWAke0b3kD3bK3IWMVjW55o0LYdPWMZETqc4cFD8bK/MDecaJrGhOWTSC/P4KVeL3D5v6sOACoL0P/1ILqjthUJasRgLKPeBUdvpLSN6PbORT6yDEm1njiewRHNJQCcA9BcbF8oZlsSoygZqTgVSTGfdlzWy55B6XEb+wr2c9PqW9HQ+GTgh2fVq+NM/Jr8O6/vfhOzaibQMYAevt0pNBVRdPyrsLqIKqWKSVETmdXlYeTDSzH8fguazojlhpUNLzV0CSqoLmDKX5Mpttp6o/T2iOHOLg/T3rMdAOnl6dy0+lYKTUX08OnOe/3fPuUqev2i69ElrcTa8y6UQU82elznKn7JBxdjWHo3mqRDjZkI1cW2lRiVBUhVhUjVxTXbql6tUXrfi9r2ylMnZyryMH4zBKmygCNdpjGheB0yMktG/0piSSKv7H6dnEpbieIrwkbzQMd7bT1fTqPCUsHCpMXMO7KA/Op8AOx19owNv4JroqeQWJLIk1ufxqpZGRQ4kFd6vXj6CgfHSQVH0C+9Gzl3PwBK+4lYh70IdmIOQxDOlvj8KAjNk0hqiKRGvf5bU1CO/5X0vx9gQqAvyknumDLIBt7r9zY9/XrUfqIoBd3e79DtX4BUbbubTJMNqG3GYL3s6UY1oTsVa2k2o5aNo0gn82HUDHp1uaPJjm1WVO79OY7VRwpwMMh8cV1Huoe6N9nxhUtHwrFy7vk5jpTCKgBGtffhzfHt0MsisdFQJVUWrKqGl1PdD4KiJqogCOfbE0sOsWhPDl2CXZl3Q5dG3/F+qccvRVOY8vd1pJSlMrPtDKa2uhaTYsasmjArFsyqmcPFh1me9g878naiHe/cISPTL6Avz3Sfjbud22nO0rQOFR1m2soZ2Ml2/HPlMhz1jgBIKesw/HkfUkUums6IMugplK43wv+X06rIQ3dgPvK++cjFyQ06p6azQ/MIB8f/JM80FdBsNxJl7wbAetnTKD1u59Vdr7MwaTGhziHMG/49drpzV6KmWqnmtd1vsiTlDwAGBPTjuR7P4Gqs+znLolps5XnM5Ri/HIhUnoO1zwMo/esvdyuckFeVx9fLbmCxko/1eLwZHDiIKdGTeWHny2RWZNLavTWfDfoY51OVNSrLwvhpTyRNxXzT+rNKJp2z+KVp6P+4A92h30+6ierfyZbMiL687u/YSciJyzH8MhMNiZkdB7GzLIlQ5xDSytMBCHQM4Imuj9Hb/8xLJFtUC3+nr+CHI/NIKE4AQDr+PxWVESHDeb7HMw3qvYGmIe/+Gv3aF22rvew9sI54FbXN2DMelyAI9bvUr78EobkSPTWE01LbXUWIzo7nVz3ABnsDrnpHXCKG4eobi5vRDTejK1GukQQ4BZzYqSgZ/bpX0CX8UfOQ5hqE0mk6Suw14HRuGm7rXQMY6hTBwupUFh36np4db0HSNc2Pr1EnM2diDHf+dID1Rwu5Zd5+vp7akc7B5/fDs9C8/b4/l6eXHqbKouLrYqSowsKyg3kYdDKvXtkWnSxKLZxKYYWZzzen8+P2TDTgudGtGd9JLBUWBOHCOZRTzuI9tjt6Hxse1eQlfC4ly1L/IqUsFTejKzPaXF9vw9x2Hm25KmIceVV5/JOxkuVpfxNXdJD12Rt4Z997PNfj6fM65hUZKwHoF9D3REIjYyuGhdchaSqqVyusYz46ealVJx+UXveg9LoHLJVQnotUlm37Ks9CKstGk3RoHpFonpFoHpHgEgjySUp5aRq6jW+i3/wO+jXPg6Zxd5c7WZO1jrTydBYk/sz0NtPOxVtBenk6szY/QULJEWRkbo+5lRvaTj9pX5R/+w3oNryBVJ6D5h6O0vueczK2lsbHwYdHB3/IDd8N5RNXB/5wcWF11lpWZ60FIMgpiDn93zl1QgPQHfjJ9nMa3PviXR0jSVhHvIHm2QokGc3RCxy8bN8dj3938Dzjw6rRl6N0nIZu3/dMzEpgp4uetPJ0ZGSubTWF22Nurb8CQQMYZANXhI1idOhIdubt4ocjP7I+eyMaGmPDx/BUt8dPWg6slvIcDMseRE5ZYxtz+CAso94BZ3HtKwiCIAgNJVZqXGKqqqtxsK9d21NK34xh2f1IJba7V5SOU7FeNrv2kteqQnSb30W3+1sk1YKGhBoxGLXLDNSIISf/ANaE4rK3MHPDfaiSxI2ePbhzyPtNevxqi8Jt8/ezJaUYFzsd31zfmQ4BLk16DqHlMVtVXv47kXk7bXWl+0d68Mb4duxKL+W+hXFYVY2Jnf15YUwbZDEhVkdptYWvNmfw7bYMKs1KreemdA3gycujsdPb4kt98as+VlXlj/3HOJBdxuSuAbT2rTt5JgiCcDo3/rCXjUlFjGrvw7tXn12PsIbGr5bIrJi5evlksitzuDf27jOaeN+Vt5vb1t6JhsbHAz+gh2/3czjSEzRN46q/JpJZkckrvV5keMgwUBUMc0ciH4tDaX0F1tHvgcHxvIznv3Qb30S/6W0ArIOe4jffMJ7d8QIuBhd+HbWwVo3/pnCg4AB3rb+PCmsFHnYevNTz+boruOsh5e7HMHeUbaXAxB/RIi5r0nG1dLrVz6Hf8SlHfKL5oHVfVmWtwdPOgy8Hf0aIc8ipdy7Lwvj9WKTybCyj3kPtMOmsxtIs45e5EsN3I7AWJXF7ZHtMnhE81OkBYjzbN/mpUsvSSC/PoK9/75Mm+mpYqpD3z0e/8U2k6iI0vT3WQU+idpnZ4JUogiA0XLOMX4IgNHhOX/zlvMRkZGbWeUwL6YP5hlUoXW4AQLfvB4xfD0ZKXg3WanRbP8T4eV/0O79AUi0oEUOw3LAC68TvUaOGn5eEBkBMQG+e9LI1S/uqcDs/HvquSY9vb9Dx8ZRYuoW4UWZSuPH7vRzKKW/ScwiNp2ka1Rbl9BueBUXVULWG53mzSqq57tvdzNuZhQTcNSCMz67tiKejkWFtvHlzfDtkCRbuyeGFv46gncGxW7pyk5WP1qcwZM4WPt6QSqVZIcbfmc+uieXeQeFIwIJd2Vz7zW4yim3lvOqLX/+lahp/xh1jzCfbmfX7IeZuz+TKT3fw0C8HSSmoPA+vShCElmJ7ajEbk4owyLb+SGfrdPGrJfs1+XeyK3PwsvdictTEM9q3q08XJkZNAOCVXa9hUkznYoiArZH50ZIkFh5dzONbnyKzIhM7nR39A/oBIB+Yj3wsDs3ODevwVy9IQgNA6fcw1uNNlfVrX2RMThJRrlGUWcr4pomvjSssFTy57WkqrBV09Izlh2HfNiihgaqg/3sWkqaitL1SJDQaQelzH5q9B63yEnnTMYZfRy7kpxHzTpvQkAqOYPzhSqTybDTXYNQ2V5z1WJpl/DI6Yr3ifQySjq+SDvKN78hzktAACHMJpX9A31MnNExlts/Un/XGsPJJpOoiVL9YLNOXo3a9SSQ0BOEcaZbxSxCEBhPlpy4xpWVl9T9hdMI67GWUNmMx/PUQUnEKxoVT0Rw8bQ3bANWnPdbLnkYLH3geR1zbuIGvUvzjQN53lHn7wEe4O/gwOmxUkx3f0ajjs2tjufGHvezNLOOGH/by/fTORPuceom3cG7klFazJaWYrSnFbEkpIqvERJS3I73D3ekd7kGPMHc8HM++afyxMhOfbUxjwa4snOz09Apzp3eE7Rzhng41JUfMisq+zFK2JBezNbWI3RmlWBQNdwc9r1/VjkHRtZuZjmrvi9mqMuu3Q/y4IwujThYlTLAlNK76fAfpRdUAtPZx4r7LwhnaxhtJkhjUyotOQa489MtB4rLLmfD5Tt64qh3OFfXHL03TWJlQwHtrkkk4Zmuu6e6gp0OgCxuOFvHHgWMsizvGVZ38uXNAGMHujSs5IAjCpePjDakATOjsT4jH2ceMk15/tXDV1mq+PPQ1ADe3m4m9/szvlryrwx2sylxDWnk63xz6jttibjnrcSmaQnZFNillqSSVJrMnfy97C/ZSYi6ttd2I4GG2MjWmMvTrX7Pt2/dBcLwwzcv/pfR7GJDQb3oLu/WvcF+P6dzLURYk/syU6Mn4OzZNb7s3975DZkUWAY7+zBnwTr1lw+oj7/0eOWcPmtEF6+Bnm2Qslxx7d6z9HsSwcjb6ja8T3O4qsDv1CnIpew+GRVORqopQPaOwTJrXJMm35hq/tIAuKH0fRL/xDfTL7kPN2IK13yPg7Hv+BlFZgG7Xl+h2fY1kKrGNyzUYa487UDtNhQY2ExcEoXGaa/wSBKFhRPmpS0xcfDwx7dqdeiNzJboNr6Hb+QUSGppLANb+s1DbX33eVmWcihS3iHe2zOZ7N1d0ko63+r5B/4C+TXqO0moLN8zdS1xOOT7ORuZO70yE14W5I+9Sk1ZYxZdb0tmSXFTTcPtkJKCtnzN9Ij24oWcwfq5n1iCzsNLM55tsfRyqrWq92/i5GOkZ5k5RpYWd6SVUWWpv1znIlbcmtDvlRPnCPdk8ueQwADf3CeHhoZGXdGLjnVVJfLIxDV8XI48Ni2JUjG+9pbmySqq5b2Ec+7JsF6NDw+1pFfx/H0Q12JBUxIFs2zbOdjpu7B3CjF7BONvpOZhdxpy1Kaw+UgCAQZaY0i2Qx4ZHYdCJu+IEQahrb2Ypk7/ahU6C5Xf1Ouukxs68XSw7uJwxMaOI9YptWL31FuLbw3N5f/+HBDoGsGjkTzW9Fv6flL0HOWsHmrMfmmsImmuwLXFw/G/DioyVPLblSQyygXnDvyfcJaxB5y8xl5BalkZqWeqJ7+W2UjEW1VJnezudHR09Y+ns3Yku3p3p6tMFvaxHt/ZF9Ns+sk0U37AKdGd/Q0VT0G16G/3GN9GAmR0GsLMilbHhY3im+1NnfeyVGauYteUJJCQ+G/QxXXw6N2g/KWMrhsUzkEylWIa+iNr1xrMeyyVLsWD4ejByURLWXvegDHz8pJtKKesw/HojkqUS1b8Tlqu/b7LkW4M+P16sVCv6P+9HF78YAM3giNLzTpTut4Px/z7bmcqQU9YgH12BVJqBZnCybWN0Pv7/ndCc/FDDB4FH+CnOqSBlbEF3cDHyoV+RLLbPM6pnFEqve1Dbjb9oYoggtHTNOn4JwiWsoXP6IqlxiVEUBZ2uYR+mpezdSHnxqO2uumBL7OulqejmjmS2ms0fzk7Y6ez4aMD7dPLu2KSnKaq0MGPuHg4fq8DPxcgPM7o0yd2awskVVpgZ/8VOckpt5SVkCWICXGpWZrTycWJfVilbUorZklxEYv6JkkKejgbentCePhEepz1PfX0cugS7cs+gcOwNOrYkF7ElpZjdGSVYlNoh0svJQO9wD3qFu9M73J1QD4cGJSh+3JHJc8uOADCsjTevXtkWF/tLb7Fcdkk1l3+0DZNV5cPJHRjWxvuU25utKq/8k8iPO7JOuZ2jQWZ6z2Bm9gnB3aHuB8U9GSW8tyaFTclFADw9qhVTuwc1/oUIgtBi3T5/P6uPFDChkz+vXNn2rI61J38vd667B7NqBsDd6M6AgH4MDBxAL7+eNQ2oW6JySzlX/jmBUkspz/Z4mjFho+tuZK5Et/5l213M1P57q+nt0VyD0fw6YBn0DPftfZVNOZvp5tOVTwZ+WO/f3rjCg/ya/BvJpSmklKVSbC4+6fjsZDtCXIIJcw6jg2cMXbw70dajLXr5//42F6Vg/PoyJMWMZcJ3qFHDGvN2nDP/9l7Y6x7INA89MjI/Dp9LtFvjm0MfqzrGtf9Mo8Rcysw2M7gr9o7T71Sei37ti+gOLgJA9e+MZeqSi+KGqOZMTlyO4ZeZaDo7zDetB7fgutsc+h390nuQVAtqaH8s478CY9P1EzuTz48XKyljK/o1zyNn7wZAc/LD2v8R1JC+6JJWIB/9Byl9C1I9yc76qB6RqJHDUKOGogX3AtmAdOwA8sHF6A79hlSec2Jb3w4ove9DbTVS/D4IwnnWEuKXIFyKRFJDJDXqtXPPHrp17nyhh3HWpLSNSAsmcZ+fL+sd7XExuHBfx3vQy3o0TUXRVNTjX529OzX6g11BhZnrv9vD0fxKgtztWXJbd5yMl95E9PmgqBo3/7iPTclFhHs68OiwKHqEueFqf/I7mfLKTWxLKeazTWkcyq1AluD+yyK4pV9ovXf+l5uszN2WyVdb0imttgLQ3t+Z+y+LYGC0Z50JkmqLwu6MUnamleDqoKdPuAfRPo6NXmXx8+5snluWgEXRCPN0YM7VMbT1P/MPnZ9tTOWzjWkoZxC9HQ0yt/YLY3rPoAu6SmTWb/H8ui+XHqFuzJ3eucFjWZWQz6/bEvD19qnznKeTgSldA/FyOv0S/rdXJfHpxjRGt/fhnbNs/CsIQssTn1PGVZ/vRAKW3dnzrFZpppWlMXP1LZSYSwg0BlKulVNqOVHeyCgbGRDQnye6zWry5s4Xg0/iPuOL+K+IcAln/ogf6qxQkdI22kqelqQBoIYNAEslUmkmlOfWSnKoPu1JGfchk9fcikkx8Wz32YwJP9EroMhUxAf7P+K3lCV1xuHn4EuYSyhhLmGEOR//7hKKv6P/6Zv6AvpfbkSX+Bdq+GVYJv5Qs3rkomGpwvj1EKSSVO5v3YOVllwGBPTjnX5vNepwqqZyz/r72XpsG+082vLV4M9PusLGtoMV3a6v0W18A8lcjoaE2mka1gGPgcPpbzQRTkPTMCyYhJy+CdUzCs2zlS1hYXRCMzgiWauRd3+DhIbSegzWK94H/ZmtXD6dlvL5EU1DPvw7+nWv1MSd/6d6RKJGDUfz7wjWaiRzBZgrwFyOZKlAyk9AytyGpFpPHNbojObog1ycfOIxOzfUNlegtL8aLbj3xRc3BOES0WLilyBcYkRSQyQ16tWSgrp+0XTMySu5Jbw1ezl5mSKdpOP2mFuZ0eb6Bn14/X/HykxM/moX2aUmXhzTmkldAs9m2MJJvLM6iU82pOFgkPnpxq609m34ZH+1ReG5ZUdYvNd2V9TgVl68Nq4tbsfv2K+yKMzbkcVnm9IoqrTdgdXKx5H7Lotg2PE+DufL/qxS7lsYR2aJCTu9zLOjWzGhU8AZ7T/5q12ojYzcI9v58NLYNjjbnf/kXFx2GVd/sRMN+PmmrnQMPLPY3BTxa3NyETd8v5cgd3tW3dP7rI4lCELLc+/COJbH53FFjC9vT2h8U9kiUxEzV91CRkUGMR7tud3jdnp07sqe/L2sy17P2qz1ZFbYmlc2Vbmgi0mRqYhxy66m0lrJa71fZmjwkBNPmsvRr3kR3V5bU2vNNQjLiDdqN5O2mqAsG7koCf2y+5Eq81FD+vB5xyv44OBnuBndWHT5ApwNzixMWsyncZ9TZrGVIRwVejn9/PsR7hJKqEvoWa2GkVI3YPxpMpqkw3LDSjTv1o0+1rkkJa/BuPA6kg1GxgcHoqDy2aCP6erT5YyPNe/IAt7a+w52Ojt+GPot4a7hJz9v+hb0K55Azj8E2FZnWIe/gubfqbEvRaiHlLsPw9wrkDTlpNsonaZjHfbSOVkJ0JI+PwJgNaHb/Q26ze+CuRwtuCdq1HBbMsOzATfCmUqRU9YiH12JnLwKqTIfAE1nZztO+/GoEUOaPLkkCMKZa3HxSxAuESKpIZIa9crMyiIosGVMykv5CRi+GUKpBG/2mEQWFmRJhyzJ6CQZWdJRai5ld/4eAHr6due5Hs/g41D3Tu/T+XxTGm+uTKJzkCsLbuzaxK9EWJWQzx0LDgDw5lXtGBvbuAaXP+/O5vllCZgVjWB3e94a344D2WV8siGNvHJb6Y9wTwfuGRTOqPa+6OQLc9dUUaWFR36NZ/3RQgAmdwngqZHR2OlP/UHUoqhc/cVODh+rYFR7Hx4cHNngc64+UsDrK45iVTUivBx4f2IHWvk6ndXrOBOapjHj+71sTSlmTAdf3hp/5pOFTRG/yk1Wur++AQ3Y9GDfBq3uEATh0pCYV8GYT7ajAUtu635GyfX/qlaquWPt3ewvPECQUyBfD/6CqsLqWvFL0zS2HtvG3evvA+CrwZ/T0Su2KV7GBVdhqeDdfXP4Jfk32nm05bshX9fcPCClbcSw7H7bagyOT8QOevKUDZCl3P0Y5l+NZC6nOnoU1zhVcbQ0ib7+fThWdYzEkqMAtHFvzaOdH266cqSqFcO3lyPnx2PteiPK0Beb5rjniH7J7egO/c7zIdH8rDcT69mBrwZ/fkY3biSWHGX6ypmYVTOPdXmEiVFXn3Rbef88DH89BIDm4IF14BOosddCI24gEk5Pyt2PlJ8Algrb6gGLbQWBZK5ADeyC2uGac7YaoCV9fqxFsYBiBuNZXA9rKlLOXqTyHNTQfmAn5h0E4WLSYuOXILRwIqkhkhr1KigsxMvT80IPo8nolz+Cbt8PqIHdsFz3e52LeU3T+CN1Ka/tfpNqpRp3ozvP9phN/4B+Z3SevHITl723Bauq8cdtPc7rZHBLl1ZYxYQvdlBmUpjWI4jZI1ud1fHissu4d2EcGcXVtR4PcrPjroHhjOvoh16+8B+4VU3j4/WpvL82BQ2ICXDmi+s64ul48kn2j9en8u6aZNwd9Cy7oyeeZzghvzujhPsWxpFbZsbBIPPCFW0anUA6U6sT8rl9wQGMOom/7uxFkLv9GR+jqeLXFR9vIzG/ko+ndGBI61P39BAE4dLxyK/x/L4/l+FtvPlgcodGHUPRFB7b8iSrM9fganDlq8GfEe4aftL49fyOl/g9ZQmt3Vszd+jXzbKJuKZpJJQcYXPOFjbnbmFv/j6smq00y/v936WPv21VnJSxFcNP1yApJjS3UCyXv4kW1r9B55DSNmJYOBVJMbMzZiw3VO6tec7N6ModMbczPnJck75/8p7vMPzzGJq9O+abN4DDRX79XJ6L8cuBFCgVjAoLp1qz8nqfVxgSNLhBu5sVMzNW3ciRkkT6+ffl3X5vnTQhIqVtxPDztUiqFSVmEtbBz1z874/QaC3t86MgCJcOEb8EoXlq6Jy+aA5wiUlJS2tRQd3a72Hk+MXIWTuRE/5AbTO21vOSJDE2fAyxXrE8sXU2CcUJ3L/xIa6NnsI9sXdh1DVsUtjH2Y7LWnmx4nA+C/dk8/iI6HPxci45VRaFexYeoMyk0CXYlVnDG9/U8l8xAS4svrkbs347xOojBfi6GLmjfxgTuwRg1F34ZMa/ZEniroHhdApy5aFfDhKXXc6N3+/jm+s71dvo+mheBR+uTwHgyctbnXFCA6BLsBu/3tKdh36JZ1NyEQ//Gs/ujBIeGxF91u9NZnE1Lva6enugWFWV11ckATCjV3CjEhrQdPGrY5ArifmV7M0oFUkNocXLLqnG3qDDw/EUNfEFUgsr+eNALgC3Dwhr9HHe2/c+qzPXYJANvNn3tZrSPfXGL3MF94ZcwerMNSQUJ7Do6C9Mjp540mOvy1rP3IQfcNDZE+QcRKBjIIFOAQQ5BRHsHISzoekaA/+roLqAJSlL+TPtL4pNRdjp7Gp/yXYklSZRYCqstV+QUxATIq+it18vAKTCoxh+uRFJMaFEDcc65qMzujtaC+2H9YoP0f9+K93ilnBDh2HMrTzKVRFXckfM7bjbNWFPEms1ctpG9Btet/1nv4eax4S9sx/WgY/jveIJZpSU8amrAx/s/5iBAQPqNj//P2bFzOxtz3KkJBEPOw+e7v7kyRMahUcx/HaLLaHR9kqso94V/QJauJb2+VEQhEuHiF+C0LKJpIbQvDn7oXS/Hf3md9D/eR9KaSZKt1vq1JMNdwnjm8Ff8P7+D5mXuIB5iQv4PWUJvg6++Dh4423vg4+DNz723nTy7kQ7j7Z1TjWpSwArDufz674cHhoSiVF/8UyQN0eapvHcnwkcyq3A09HAu1e3b7Kkg5uDgY+mdOBQTjmR3o7YGy7eO1/7R3ky74auXP/dbuJzy7n5x318PbUTLvYnwrOqaTz5x2EsisagaE/GdvBt9Pk8nYx8cV1H3l+bwscbUvlhRxYmq8pLY+v+zDfU1pQibvxhH0a9zIyewdzYJ7hWcuPn3dkkFVTi7qDntn6NnyxsKp2DXVm8N4e9WaWn31gQmrH0oirGfrode4OOudd3FqsMT+GzjWmoGgyK9qRDwMlLIZ3KT4kL+fHIfACe6T775P0MyrLR7foK3d65+JlKubvrRF4p2sZHcZ8wLHgInvZ1P3yvyVrHrM2Po/xbUz+37mG7eHdmTNgVDAsegpOh8f/WqqayNXcbvyT/xtqsdSfOeQoOOge6+3alj18f+vj3IsQ55MSTlQUYFl2PVF2EGtAF69iPwXDmfS7UNldgHf4qhn9m8dCBFdwx5Fl0XW894+PUq6oIOWklcuJy5OTVSJZK2zm9WqF2mt405zgP1E7Xo8b9zA05e/jJNZy08jQe3jSLZ3s8fdLET7mlnIc3zWJH3k70kp5nu8/Gy96r/hNUFaJfNB2puhg1oBvWke+IhIYgCIIgCIJwQYjyU5eYispKnBwb3zDxomSuxPDbTcgpawFQA7piHfn2SZs5bsjeyPM7XqTQVFTv8wbZwC8jF+LvWLssj1VVGTxnC8fKzLx7dXtGtW/8xHJzpWoaX25Ox2xVuaVvaKMSO1UWhV3pJfx9KJ/5O7OQJfhqaif6RHicgxE3HwnHyrn+uz0UV1npEuzKF9d1rGnm/f32DF74KxFHo44/b+9BgFvjVjr8vxWH8rj75zg04OupHekbeeZ3sVRZFK78dDtpRSfKfbnY6bixTwjTewYDMOLDrRRUWJg9MpppPYIbPd6mil+HcsoZ9/kOnO10bH+kP7KYkBFaqKeXHmbBrmwAvJ0MzJ3ehUjvFnYN0ASySqoZ/sFWrKrG/Jld6BJ85nf9p5SmcO2K67GoFu7qcAcz286o9XxFZSXOFanotn+KHP8LkmqpeU4Brm3ThXhzQb1Nwzdmb+KhTY9i1awMDx5KL7+eZFZkkVmRRdbxr/9e09jr7BkaPISxYVfQ1acLcgN6HFhVK/FFh9icu4U/UpaSVZld81ysZweuihhHe4+2mBQT1YoJk2LCrJoxKSa87b3p6BVb/+pXSxWGBZORs3eiuYVinroEnM68t9l/6Ta9jX7jm2hIqFFDUWOvRY0cBroGrEZSFSjNQCpKRio6ilyYhJR/CCljW60mzJpzAGr0CKy97gLXxv/duhCk3AMY5o5ipYORWf4BmDUr/o7+vNrrRTp41S6rll+Vz70bHiCh5AhOekfe6PMaPf161H9gxYzh52uR0zejuQZhnvbnWf9bCs1Di/z8KAjCJUHEL0FonkRPDZHUqNfR5GSiIiIu9DCanqYh7/8R/ernkcxlaDojSt8HUXrcUe+HXLNiJqsii7zqfPKq8sirzie/Kp8NORtJL89geutp3Nvx7jr7vbM6iU82pNE/yoMvr+t0Pl7ZRUPTNJ7/6wg/7sgCIDbQhTkTYwg8zQS7RVHZm1nKluRitqQUsSejFIt6Iuw8NCSCWy+Cu/cvBvE5ZUyfu5fSais9w9z47NqOFFZYGPPJNiotKk+PasXU7kFNes4X/jrC99szCXK354/beuBoPLNVLa+tOMpXm9PxczHy6LAoPtmQypE82x2u7g562vu7sCm5iHBPB/64vQeGs1iN01Txy6qqdH99A1UWlaW39yDaR9y9LrQ8OaXVDPtgKxZFI8jNjswSE74uRn6Y3oVQT4cLPbyLynPLEvhxRxa9w9359vrOZ7y/qqncvvYuduXvrrcXgZR7APPy2Tjnbj2xT3AvlB63I+XuR7/pbfbaGZkW6A/Al5d9VtPselvudu7f+BBm1czQoCG81Ov5eksJ5VYeY1naXyxJXUpqWWrN4wGO/sR6xRLkFEiwUzDBzkEEOQXh4+BNUkkS2/N2sv3Ydnbl7abCWlmzn4vBhdFhIxkfMY5ot0aW3NRU9L/fhi5hKZqdG5apv6N5nV3fLNtxNXRrnke/49MTDzn6oHSYhBp7DZpnNGgalOcg5x1EOhZn+8o/hFSciqSY6z2s6t0WNfpy1OjL0fw7NuuG17rVz6Hf8SkHPUN4ODCY9IpM9JKeezvezbXRU5AkibSyNO5efx9Zldl42nkwp/87tK1npTIAmob+rwfRHViAZnTGct1vaD7tzu+LEi6YFvv5URCEFk/EL0FonkRSQyQ16rVzzx66de58oYdx7pRlof97FrqklQCovh2wjnwTza9jg3Zfl7WeBzc9govBhaVX/IajvnZWP72oimEfbEUCVt7Tu9G9AZobTdN49Z+jfLM1AwlwstNRblJwd9Dz5vj2DIiqe4e/RVH5dV8OH61PJavEVOu5AFc7eoe7M7i1NyPaep+0bvOlaF9WKTO/30u5SaFvhAeSBBuTiugW4sb3Mzo3+aqCcpOVsZ9uJ6vExIxewTxxBv1i9mWVMuWrXagafDKlA4Nbe6OoGssOHuP9tSmkFFbVbPvhpBiGtT27OzqbMn5N+3Y329NKeGlsGyZ2DmiSYwrCxeTF5UeYuy2THqFuzJkYw/Xf7SExv5JANzu+n97lkvn7dToZxVWM+mgbZkXju+s70Sv8zFcN/pr8Oy/ufBl7nT0/jfiRQKfAE0+W52L8ZghSVRGaJKO2vgKl+21ogV1tz2saug2vod8yh6e9PfnFxbmmafje/H3cs+F+TIqJgQEDeL3PK6ftjaBpGgcK41iSupS/0/+h3FJe73YyMipqrcdcDa508+3KZYGDGBo8GHvd2f2M6NY8j377J2g6I5ZJ89BC+pzV8f6fVHAEef98dHE/I1Xm1zyuerdDqshBqqp/Ra6ms0NzD0PziETzjETziEQN6Qse4U06vgvKXIHxq0FIZVkUt72SZ709WJm5GoDBgYOYGHU1T217hiJTEcFOwXww4F2CnU++IkW39UP0615Ck2SsE75DjRxyvl6JcBFo8Z8fBUFosUT8EoTmSSQ1RFKjXvvj4oiNibnQwzi3NA354GL0q2YjVRfbyhO0n4C1/6PgFnLKXVVNZeLyKaSVp/NI54eYEj2pzjYz5u5hS0ox9wwM5+5B4U0y5OSCSv45lMe4jv74udg1yTGbiqZpvL0qmc82pQHw4pjW9Inw4N6FccRllyMBdw8M586BYciShKJq/HEglw/WpdSUJHJ30NM3woPeER70Dncn1MNBJDJOYVd6CTf9sJdKi23CyaiT+O3WHuesbMy6xAJumbcfCZg/swudG1B6xayoXP3FThKOVTAmxpe3JrSv9bxVVfl9fy5fb8mgnZ8zr41re9b/5k0Zv95YcZQvNqczpWsAz1/RpkmOKQgXi/xyM0Pe34LJqtaUlssrNzHt2z2kFFYR4mHP99M74+96aSc2NE3jph/3sTGpiF7h7nw7rdMZx6nC6kImLr+GUksp93e8h2mtp/73BBgWTUNOXk2laxS6Kd+Dez0rEzUN3doXKN35GWOCAynTyYyPuIrl6X9Taa2kr38f3uzzWv3lnU6hWqlmW+52UsvSyKzIJKMik8yKTLIqslE0BXudPV29O9PDtwc9fLvRyr0VOqkJelCVZaHbNw/9prcAsFzxAWr7CWd/3JNRLMhJK5D3zUNOXoWk2f52apIOzTMKzbc9mo/tS/VqBS6BdXqvtURS2kYMP12DpClY+j/Gjz7+vLt3DlbNWrNNW/c2vNf/7ZP30ADkw0vR/34rEhqWoS+gdr3pfAxfuIhcEp8fBUFokUT8EoTmSSQ1RFJDKD+Gfs2z6OJ/BbCVpOoyE6X3PeBw8t4BPyUu5PU9bxLiHMyiy3+qU4t6yf5cHv41nkA3O1bc3RudfHYTtX/GHePJPw5TaVbwcjLw9oT29G7EnaLnygdrU3h/XQoAT49sxdQetvJHJqvCS8sTa+q1D4jy5MpYPz7ZkMrRfFsJC09HA7f1C+WaboEXdbPui9G21GJu+XEf1VaVBwdHcFv/c1ui69Ff4/ltfy7R3o78ckv30/ZL+Wh9Cu+tScHdQc+yO3ri6XRmk20X2t/xedyzMI62fk78dutJ6ocLQjP1b9KuU5ALC2Z2rZmozy01MfW73aQXVRPu6cD3Mzrj43xxJdLPp8V7s3n898PY6WV+u7U7EV5nnjieve0ZlqUtp7V7a74b8lWtlRTyrq8xrHwSTW+PZfryU5de0jR0q59hUcJ8XvQ+cY3S07cHb/d746xXTfyXVbVSUF2Ip70HBrkBfShOp/wYcvpG5LRNSGmbkIuTT5yr/yyUPved/TkaqiwbOcvWv0Pzbg36SztxJ+/+FsOKxwGwXPUl+73CeHzLk2RVZtPTtwdv9Hn1lE3lpYyttsSIYkLpcgPWYS+fr6ELgiAIgiAIlyiR1BBJjXpdisvvpJy96Ne+hJy2AQDNzhWl110oXW4CY90JjCprFVcsHUeppZS3+r7OoMCBtZ43WRUGvLOZkmorX17Xkf71lF5qCLOi8saKo3y3LRMAR4NMpUVFluCBwRHc3Df0gjcw/mxjKm+tsk1OPD48iht6113p8sveHJ75MwGT9UQZCzd7PTf1CWFazyCcjKculSGc3KHccuJzyrky1u+sk2enU1RpYfTH2yistHD3wDDuGXTy2qOJeRVc9fkOLIrGm1e1Y2ys3zkd27+aMn7llpoY+N5mZAl2PjrgjHuJtAQv/53Ib/ty6BjkSu9wd3qHe9DWz/mc/6wJ51ZRpYUh72+h0qzUlIX7r8ziaqZ9t5usEhPB7vY8MDiC0TG+F/zvzfmWV25i9MfbKa228vDQSG7pG3rGx9iSu5W719+HjMzXQ74gxvPEijWp4AiG7y5HslZjGfoi2+Wup49fmob0z+NMy/ubeDsj3VQj7wePxy5qKJpvhwvf40FVkEpSkY7FI+XHI+XFI+fFIxWn1NpMk2Q0/06oba9C6XYzXGI/Wxcb/Yon0e3+Gs3giOW63yjzCONAQRzdfLueMqklFRzB8OM4pOpilOgRWMd9eUmscBHquhQ/PwqC0DKI+CUIzVND5/TPaLbx9Tff5Lfff+dwQgIO9vb07t2bl55/ntatW9dsM3zkSNZv2FBrv5tvvJEP5syp+e+09HTuvf9+1q5bh7OTE9OmTuWF555Drz8xnLXr1jHr8cc5GB9PcHAwjz36KNOnTTuT4QoCAJp/JyyTFyClrEW/9kXkvIPo172Cbv3raB7haF6tj3+1QvNqhYN3G8ZHjuPbw3P5IWFenaSGnV7H2Fg/vt+eyc+7sxuV1MgtNXHfojh2Z5QCcEvfEG7vH8aLfx3hl325vLUqmd0Zpbw2ri2u9k1wF+UZyis3sWBnds0KjYeGRNSb0AAY38mfdv7O3LcwjrxyMzN7B3NDrxBc7EUy42y19XOmrZ/zeTmXh6OB2SNb8cDig3y6IY3L2/nQ2rfuuRVV46k/DmNRNC5r5cmYDr7nZXxNzc/VDj8XI7llZg5kl9EzzP1CD+m8+nl3Ft9uzQBgXWIh6xILAVtCsmeYO52DXbE31J1AdTLqGdHOWyQrL2Lfbcug0qzQzs+Zy1rVLSkT5G7Pt9M6M33uHjKKq3nol3g+3ZDGvZeFM6zNpdPj6IW/EimtthLj78zM3ifvJXAy1dZqXtn1OgCToyfWSmigmNH/cReStRo1/DLULjNh797TH1SS0Ia/zId/W9iY9DsjKipxTH0DNr6B5uiNGj4INbQvyEZQqsFqQrKaQDGBYkFz9AQnfzRnPzQXf3DyhTMsWVWLpiEdO4CctBI5aRXSsQNI1uq6myGh+XVADemLFtoPNbgX2Lk0/rxCk7IOeQ6p8Chy6joMi2fgfP0yevv3OvVO5bkYFk5Fqi5GDeiKdcxHIqEhCIIgCIIgXFTOaKXG2KuuYtLEiXTv2hWrovD0s88Sd/Age3bswMnJtnR5+MiRtIqO5unZs2v2c3RwqMmsKIpCzz598PPz45WXXiInJ4ebbrmFmTNn8sKzzwKQnJJCt549ueWmm5g5Ywar16zh4Vmz+HXRIoYPG9agsYqVGvVLz8ggJPjMP7y3GJqKfPAX9BvfQCpJq3cT1T2CjPGfc+XaW1A0he+Hfktbj9o19w/llDPu8x0YZIl1D/TB07Hhkwabk4t4cPFBCistuNjpeHVcO4a1sd1Jq2kaP+/O5vm/jmBRNEI87Hl/Ygzt/M/t5EBxlYVtKcVsSSliS0pxTfko4LR37f9LUTUUTcOou8B3kgqNpmkad/10gJUJBXQMdGH+zK517tqfuy2DF5cn4mTUsfT2HgS4nb/SHk0dv+79+QDLD+U3+i7t5upAdhnXfr0Ls6JxU58QfJ2NbEkpZltqMRVm5bT7R3k78v7EGKJ8Tl6yRLgwyqqtDJ6zmTKTwpyJMVzezuek25abrHy7NYOvt6RTZrL9u8cEOHPfZREMjPJs0cmNf8vP6SRYdHO3Rv2N/XD/x3x9+Ft8HXz4ecT8WiV8dOteQb/1fTQHD8w3rARn/zOPX0UpyClrbF+pG5Aslaffpx6ao7etIbZXazTv1qjebdC82oCTT+0VFJoGqhXM5cgZW04kMspzah9Pb4/m3QbNpx2adztUn3Zofh3A3r1R4xPOk+piDN+PQS5KQg3shmXKzycvzWUuxzBvAvKxA6juEVim/g6OJ++5IbR8l/znR0EQmi0RvwSheTov5afy8vIIiYjgn7/+YkD//oAtqdGpY0fefP31evdZ/vffjJ84keQjR/Dzs5Us+fyLL3jy6afJSEnBaDTy5OzZLPvrL3Zt316z3/UzZlBcUsKSX39t0NhEUqN+RcXFeLi7X+hhXHiaBuU5SAVHkAsSkAqOIBUkIB2LQzKXo4b2Z1Z4G/5K/4fRoaN4vuczdQ4x4YsdxGWXn7QsU31+2J7Ji8uPoGrQ1s+J9yd2INTToc52B7LLuHdhHJnF1djpZd68qh0jTjE5dTKl1Ra2pZawJaWInWkllJusdbZRNMgqrua/gUAC2vk7c3Vnf6Z2D2rRk1tNLb08nRd22GpOz+ryCFFukRd4RGcmt9TE6E+2UW5SCHC1w6Cr/W+fXWrComg8M6oV13UPOq9ja+r49cWmNN5YmcSItt68P6lDkx33YlZUaeHqL3aQWWJiSGsvPpzcoabskFVVicsuZ0tyEYePVaBqdS8PdqSVkFduxtEg89LYtoyOaZ4rdVqqTzak8s7qZKK9HVlye48GlZQqqbLw1ZZ0vtuaQaXFVkawV7g7H0yKuSArBc+1kioLV3yynbxyM7f3C+WBIWceoxNLEpm6YgaKpvBmn9e4LGhQzXNSxlYM8ybYmiqP+wK19WjgLOOXYkbK3GFLcGTvAVmHprcDnZ1tYlpnZ7uLvrIAqTwHqSIXynORFPNJD6nZuYHeDv5d6WE1IVH3d14zOKCGDUCNHIYW0hvNPULcsd9MSYVHMXw/BslUgtJ+ItaRb4Hu/37HFQuGxdORU9aiOXphvm4JeIRfkPEKFw/x+VEQhOZKxC9BaJ7OSfmp+k4C4OlRu6nx/AULmDd/Pn5+fowePZonZs3C0dHWu2DL1q10iImpSWgADBs2jHvuv5+D8fF07tSJLVu3MmTw4FrHHDZsGI/MmnU2wxWApJQUUVMQbHcnugSguQSghJ8oLyUVHMEwdyRy2gam+bXmL2B5+t/cE3snPg61kwqTugQQl32EhXuymdEr+LQT//N2ZvL8X0cAmNDJn2dGtTpp8+wOAS4svrkbj/4az9rEQh5YfJA5E2MY2sa73u3/pWkaW1KK2XC0kC0pxRzMKUNtYNoy2tuR3hEe9Apzp0eYOx6OLW8y61xbmbGK53e8RIW1AoBpK2dwR8xtTG19LTqpeUwC+bna8fiIaJ5ccpjsUlO92/QMc+eaboHneWRNH786Bdn+OO7NLG2yY17MFFXjkV/jySwxEephz2vj2taa9NbLMp2CXGvel/rkl5t58JeDbE0p5oHFB9mVUcKjw6LECq2LQKVZ4est6QDc3j+swT0y3BwMPDA4khk9g/l8Uxo/7Mhia0oxN/+4j6+mdsLZrmWVGnt9xVHyys1EeDlw58CwM95f0zRe2fU6iqZwWeCgWgkNTKUYlt6DhIbSYUpNQgPOMn7pjGihfVFC+3L6tVQ1A4WqQqSyrBM3buQfRspPQCpOQTKVQP0hHs0tDCVqaE0i41Jvtt1SaJ5RWK78FMPCqegOLkQ+9BuaZ9R/Vt60QU7405bQMDhgmTBXJDQEQHx+FASh+RLxSxBatkZ/UlVVlYdnzaJPnz7ExMTUPD5l8mTCQkMJ8Pdnf1wcT82ezZGEBBbMmwdAbm4uvr617+z0O/7fubm5tu/HjtW7TWlpKVVVVTg41L2z3WQyYTKd+HRWVlbW2JcmXMI0r1ZYh72KYdl9dNz+NZ1jB7KnPJmfji7krg531Np2TIwfr/59lCN5lbz0d+IpJ/YW7snm2T9tCY2b+4Tw8NDI0yZB3B0MfDwllkd/i+ePA8e4b1EcH03uwMDo+ksAVJitzP4jgaVxx2o9HunlSK9wd3qFu+PnYlfvviEe9vg41/+ccHoW1cKcfR8wL3EBAJ28OuJscGZjzibm7P+ANVlrea7H04Q4N2xFz4U2sXMAnQJdKatnZY8s2Xp9XMimwlbVSlZFFqllaaSWp1FhqcDP0Y8gp0ACHAPwd/RDL9v+vJkVM0mlySSUHOFI8REOFydQaCqkl19PBvoPRSep5JaZySmtxt+1ZU/cfbQ+hfVHC7HXy7w/qUOj7sL3djby1dSOzFmTwqcb05i7LZMDWWW8e3X7Fv/+Xezm78yiuMpKmKcDo2LOfGWfp5ORWcOjGdfRnxlz97A3s4xb5+3n8+tiW0wPlc3JRSzck4MEvDS2LXb6M0827yvYz96CfdjJdjzS+aFaz+lXPY1UmoHmFoZ16AtNNOpGkiRw9EJz9ELzi639nKXK1txbU0Fvh6b7d9WH0fbdUPc6W2gZtPCBWEe+jX71M0jVxUj5hyD/EBz67cQ2kg7r2E/RAjpfuIEKgiAIgiAIwmk0+lPqfQ88QNzBg6z6559aj9984401/79Dhw74+/kxaswYjiYlERV57sqwvP7mm7z0yit1Ht+zfz9OTk506tCBhMREqqqrcXF2JjQkhLj4eABCgoJQNY3MrCwAYtu3Jyk1lYqKChwdHYmKiGB/XBwAQQEByDod6Rm2BqsxbduSnplJaVkZDvb2tGnVij379wMQ4OeHnZ0dKWm23g3tWrcmOyeH4tJS7IxGYtq1Y9fxxpF+Pj44OTmRlJICQJvoaPLy8yksLkav19OpQwd2792Lqml4e3nh7upKYnIyANGRkRQXF5NfWIgsy3Tp2JG9+/djVRQ8PTzw9vIiITERAH8/P9IzMjiWnw9At86d2R8Xh9liwd3NDX8/Pw4lJAAQHhpKdXU1Ocdsk+SdY2M5lJBAtcmEq4sLwUFBHDx0CIDQ4GCsVitZObbayx07dCDx6FEqq6pwdnIiPDSUA8ff7+BA2x3eGcff7w7t2pGSlkZ5RQWODg5ER0Wx78ABAAL9/dHr9aQdf7/bt21LxvH3297OjratW9e83/6+vtjb29e8321btyYnN5fikhKMBgOxMTHs3LMHAF9vb5ydnWve79bR0eQXFFBYVIRe15Zusdeg2z+fqakH2ePlwMKji+lq7oZRNhIdEUFxaSn5BQVMbG3H9wermLstk61Hcnh6SADtQv05fPz9jgwP57d92by61pawm94ziJEB1ezauxd3V1cC/P2J/8/7bTKZyD6e3OscG8vhI0eYEmaisMSBTelV3LlgP4/0dGJUlwhURSEzOxsAJ78I7vppPxmlVnQSjInxIchQQYy3ng6RwciSRHpmJloBxLRrR1p6OmXl5TjY29M6Opq9Bw6QBgT4+2M0GEhNt93t265NG7KysykpLcXOzo72bdqwe98+28+sry+ODg4kp6bafmZbteJYXh5FxcUYDAY6xsSwa+9eNE3Dx9sbVxcXjh7/mW0VFUVhUREFhYXodDo6x8ayZ/9+FEXBy9MTTw8Pjhw9CkBURASlZWXk5ecjSRJdO3Viz4H9VJgrcHCxx9ndieSUVLz0XkSGh1NZVUXu8Z/ZLh07cvDwYUwmE26urgQGBBB/+DAAYSEhmC0Wso//zDY2RlTqK/k853MOFtu2vTp4AjMip5OVmU2UbxQLCxexr2A/U5ZP5Rr/ydzR6zb2HYi7aGNEZHg45eXllJ4iRsTF7T9nMWJP+R4y5AxUTaWsohwVFXc3V0rLyygyFZOfns8x8zEU7eT3K8vIeOjdsdc5kGPOqXfblLJUFiT+jHMrD6qLY/lqYzGPjxxX837/GyM2xR3l1yMmpvQIJ8rZcjxG6OgUG8vufftQVRVvT0/c3d1JTEqyvd//iRGyJNGlUyd+Wb+HJUcqqFJ1GAxGKitt9fEdHBxQFIXWbipXRNnRvXNn4uLjMZnNDY4RVdXVuLq4EBIURNzx9zskOLhWjCi2D+TDdbbf1du7uRHpYayJh0GBgTUxAk4eI+BEjBjkWYpzDyc+3VfN7oxSxn68lRGRjozpFgVFqRh10gWNEfvi4rBYLHi4u+Pr48PhI7akckRY2HmPEU15HWFxDuSrTSkUVpiRZQknJ+eamziSS22loy4Pgb379p1VjPhqaiemfbOLneklzPx2Bx9Oak9aiu3n+98Y0dyuI46kpPPoWtt7NbqVMxQkE1d+5tcRn+38EoB+Xn0xmo3sTLD9HrV3rcT9wE9oSMS3vY8oo3OtGBEYEFDzO1dfjNh74ABWqxVPd3d8vL1rXUdUVFSQm5cHQNdOnZouRqgKmWnZQDmxMTEcTU6msrISJycnIsPC2H/wYKNjxMV+HdFSY0SDriOsraD/D7Tzd6I8ZQdqThxOlal4WnJQijNIaX0TmrEN7iUlZ3Ud0dxixPn9rHHm1xEXJEYcv46wKgpmi0XEiEslRpynzxoiRrScGAFctNcRiqKwc88eESNEjBAxopnFiH9fy+k0qqfG/Q8+yJKlS1mxfDkR4eGn3LaiogIvPz+W/Porw4cN47kXXmDpn3+ybfPmmm2SU1Jo16EDWzZupHOnTgwdMYIunTvX6svx7dy5PDJrFseO/1D9v/pWakS1aSN6avyf5NRUIsLOvNzCJcdSieH7K9DyDzMmPJIMycpjXR5lYtSEOpuuOJzPY7/FU2ZS8HQ08PaE9vSJsJVkW3bwGA8uPoiqwbXdAnlmVKtG9acwKyr3/hzH6iMFOBhkvriuI91D3QH4M+4YTy45RKVFxdfFyHtXx9A1xO2sXv7F6O/0f3h33xyKTSWY1bp1wgcGDODp7k/ibufe5OfOKM8guzIHRVVQtBNfhaYiPtz/MaWWUlwNrjzbYzYDAwfU2je7IpvndrzIjrydAHT0jOXy0BEMChyAv6N/k4+1OTtWdYyxf44/ZcLiX3Y6O8KcQwl1CcXF4EJuZQ6ZldlkV2TX+flwNbjS2r2V7cutFU4GJ1ZnrmVt1loqrCea74Y6h/Jq75do7d4KAIuiMunLXcTnliMBdw8K584BDS/rA5BwrJw5a1L453D+abftE+HO2+Pb4+lkbPDxGyK9qIqrv9hJSbWVa7sF8uzo1k127LTCKu5ZeIBDuRU1jxl1El1D3Ogd7kHvCHc6B7mKvjxn6WB2GXPWprD6SMEptwt2t+evO3tiaIJyYHszS5n5/V4qzAr9ozz4aHKHRq1suFh8tD6F99akEOBqxx+392hUWa0iUxGjl16JRbXw7ZCviPFsb3tC0zAsmIScvgklZhLW0e/V2VdcfwmC0FyJ+CUIQnMl4pcgNE/npFG4pmk88NBD/L5kCX8vW0Z0dPRp99m0eTNDhg9n+5YtxHboUNMoPCUxsabE1BdffcUTTz1FenIydnZ2PDl7Nn8tX87ObdtqjjN95kyKiopEo/CztHPPHlFTsIH+7a/xg4Oe17w8CHUO4cvBn+Fh51Fn2/9O7MkSPDA4gkgvR+5bdBCrqnF1Z39eHNPmrEr2mK0qd/50gPVHC3E06vj82liWx+fx3TZbNrN3uDtvT2iPVxNPiF4MjpYkMX3lTExq3QLg9jp7LKoFRVPwtvfmuR5P08uvZ5Oc16pa+TTuc745/B1aPQ1U/9Xeoz2v9n6RQKf6+0yomsrPRxcxZ/8HmJQTr6G1e2sGBQxgUOAA2ri3ueQnfj+J+4wv4r8i0jWSoUGDkSUZSZLQSTpkSaYgp5D+bfsS6hKKr4MPslR34lbVVAqrC8msyKLCWkGkayR+Dr71vrfVSjVvb/6TBQl/YXSJR5MsTIq6mlldHgHgs42pvLUqGYMsYTnenGZgtCevj2t32p4zyQWVfLA2haVxx9AACbgy1o9+kR51xpJfbmbO2mSqLCp+LkbemxhDl+CzT0yarSo/7c7ikw1p5JWb6Rjowg8zumDUN23/i2qLwtK4Y2xOLmJLSjF55bWTSiPb+fDWhHboZdF340wdOVbB+2uTWX7IlhTTSXBVJ396h9f9OyQB3ULdCHRrujJgO9JsvTWqLCqDW3kxZ1JMs+yfklduYsQHW6m0qLwzoX2jG9x/e3gu7+//kHYebZk79Juax+WkVRgWTUPTGTHftAHcguvsK66/BEForkT8EgShuRLxSxCap3OS1Lj3/vtZ8PPP/Dx/Pq1bn7jT083VFQcHB44mJbHgp58YefnleHp6cuDAAR557DGCAgNZsXw5AIqi0LNPHwICAnj5xRfJzc3lxptv5oYbbuCFZ58FbCs3uvXsye233sqM669nzdq1PPjII/y6aBHDhw1r0jfgUrN3/346xcaefkMBAPnAz5j/up/hIUGU6WSc9I5Mb3M917W6Bgd97ZrT1RaF55YdYfHenFqPXxnrx6tXtkUnn/2EdbVF4bb5+9mSUlzr8dv7hXLvZRFNco6LjUkxMWPVjSSWHKWvX2+e6PYY9jp77HX22OnskCSJhOIjPLl1NsllKQBMa3Udd3a4HaOu8QmenMocntg6m30Fx0stuYRhlI3oZB0yMjpZh07S0c2nKze1m4lBPn1/gpzKHP5JX8m67PXszd+HilrzXKRrJB8MeBdfh8ZNtjV3ZsXMmD/HUWgq4tXeLzEseGidbc5F/DqaV8HoT7bj6LEPnf+PtPdoz3dDvyIpv5Jxn23HrGi8emVbAJ75MwGTVSXIzY73JsYQG1j7b0txlYVtKcWsOJzPkgO5HM+DMKq9D/cMDCfKx+mk40jMq+Cen+NIKqhEL0vMGh7F9T2CGpXosigqv+7L4cN1qTXN3kM97Pn2+s5NOuFdH03TSCqoZEtKMVtTilmVkI9F0RgT48vrV7VrkTGqIZILKpm/M4sqS4PbPFNQYWHl4fyapNiYDr7cPTCccC/HczbO+mxOLuK2+fsxWVVGtPXmzfHtmt2KjaeXHmbBrmw6BbmwYGbXRv1eqZrK+L8mklmRxexuTzIuYuzxJxQM345Azo/H2v02lMHP1Lu/uP4SBKG5EvFLEITmSsQvQWiezklSw97Zud7HP/vkE6ZPm0Z6RgYzb7qJg/HxVFRUEBwczLixY3ns0UdrDSI1LY1777+fdevX4+ToyLSpU3nx+efR60+UAli7bh2PPvYY8YcOERQUxOOzZjF92rSGDlUkNYQmo//rQeISFvOijy/xBtsdqt723tza/mauDB9T05D4Xz/vzub5ZQmYFe2c3KFcaVa4Zd4+dqSV4GKn4/Wr2jGktXeTHf9i8+aet5mf+BOedh7MG/49Xvb1N0qvtlbz7r45LExaDEAb99a81PN5wl3Dz/ica7LW8fz2Fym1lOKkd2J29yfqnWQ/KdUKlkowOIFc/+RfkamIjdmbWJu1js25W6lWqunoFcungz5qUILkTFhUC3vy92JWzOhkHXpJj07SoZN12OnsiHKNrPNzfL79lbacp7Y9g4+9D0tG/9Kw8VgqkVPWIuXFg2IB1QKKFUk1g2K1/bdqBcVs+65akBQrmqxH8+uAGtQTJaArPefspVw9hnP0GxhkA6uvXMFNPxxkR1oJ/SM9+OK6jkiSxKGccu5ZeIC0omoMOonHR0QT5GbPlpQitqYUE59TXms9z5DWXtw3KIK2/vX/7fx/5SYrT/1xmGUHbfUsR7f34ZnRrXEwNCx+qBosj8/jg3UppBdVA+DrYuSO/mFM7BJwQe6wX5WQzz0/x2FVNSZ08uelsWe3Yq05+uvgMR5fcphKc8MTGv91eVtv7hkUQSvfkyfFzrX1Rwu5Y8F+LIpGjL8z702MIcSjeTSTTsyrYOyn21E1+GFG55rSjWdqY/Ym7tv4IC4GF5ZdsQR7vS1BKB/4GcOy+9DsXDHfshkc6q6iEQRBEARBEARBEBrmnCQ1mhOR1Kjf7n376NKx44UeRvNyvL8G+YdZFt6d9530ZFbaeruEu4Rxf8d76R/Qr9YuiXkVHMgq44oOvk1S2/z/VZit/BmXR98ID4Lcz+2d1xfSv5NIAO/2e5v+AX1Pu8+arHW8sOMlSswl2OnsuLndjVwTPbnOypr6mBUzc/Z/wPzEnwBbWamXe71AsHNQwwZsqUK35zt02z5AqrTVvtcMTmDngmZ0tn13D0NtOw41YjAcX0mSXp7O9StnUm4p55royTzc+cGGna8BkkqTeWrr0ySUHDnpNoGOAVzX6hqujBiLo/783gX+rxtX3cK+wv3c3v5Wbm5/Y73b7N63jy6tw5CTViIn/ImcshrJUnVW59WQSNOHs7Y6ko9apVNBNdcFvManqzQcDTJLbu9BsPuJn53SaguP/XaIlQn19zaI9nakV7g7V3X0p2PQmf/t0TSN77Zl8vqKo1jVxv959nQ0cFv/UK7pGoi94cLeVb88Po8HFsWhaDClawDPjW59SZRasygqb65M4puttqZx3ULc6BfZ8AlvnSwxMMqT9gEu52qIZ2RzchEPLD5IUaUFV3s9b1zVjsta1Z9kvpjcNn8fa44UMqKtN+9P6tDo4zyw8WHWZ2/g2ugpPNT5AduD1mqMXw5AKs3EOvAJlF53n3R/cf0lCEJzJeKXIAjNlYhfgtA8iaSGSGrUS9QUbBwp/zCGuaOQrNVUDXyCnzx9+CL+a4rNxcjIzB32DW3cm675rgAF1QVc+880Ck1FTImexCOdH6p/w+I0dEf/RvOIRA3pDQZH8qryeGb7c2w7tgMATzsPbmg7g6sjx2Ons6tziBJzCasz1/JT4s81k//TWl3HXbF3NGzVhGJB3j8f/eZ3kcqzG/T6NHsP1LZXorQbjxbUg3XZG3hwk62Xw4s9n2dk6IgGHeekx9c0FiYt4t2972NSTbgYXAhyCqxpcm493vS82FRU0yzbxeDC1ZHjmRI9CR8Hn7M6/5k4VHSIaStvQC/p+eOK3/CuZzWOnLSK8jXv4F60D0m1nHidrsGoYf3RDI4gG0DWg85g+/86fc1jms5oe042gKUCOWsncuZ2pJK0mmPd7ufDRkcH1LzxVOT34qnLo7m+Z93a+Jqm8cXmdD7dkIqHo4He4R70CnenV7g7Ps51f74aY2d6CY/8Gk9mcfUZ7efuoOemPiFM7RGEk/HCrr75rz8O5PLIr/GoGlzfI4gnL49uFomNrJJq/jqYV2+Cyd4g0zXEjXZ+znXKauWWmbh/URy70ksBuLlPCA8MiWj2fUWyS6q5f9FB9mTaXtft/UO5d1DDSx9WWRR2p5eQX2FhSGuvRjXrPhObk4u44fu96GWJpbf3aHTprpzKHK78cwIqKgsvX0C4i63hpG7bx+jXvoDmHID55g1gOHnyXFx/CYLQXIn4JQhCcyXilyA0TyKpIZIa9UpNSyMsNPRCD6NZkvd+j+HvR9FkPZbrfqPMuzWPbJrF9rwd3NLuJm6LueVCD7HF0DSN+zc+xMacTUS5RvHd0K/qJiOsJnTbP0a3ZQ6S1Tbxq+mMaEE9USMuwxo2kD+r0vgs/ksyK2zN1H0dfLix7UzGRYzFpJhZm7WOv9P/YUvuVhTNVhrGzejGcz2errP6pl6qghz/C/qNbyGVpNrG4BKIte+DqG2vAmsVmMqQzGVgLkeqLkHK2Iou/hekimMnXq9bKErstcxx1vP14bnY6+z5ZsiXRLtFNer9KzIV8fyOl1ifvQGA3n69eLb7bLwd6pYpq7ZW80fqn/x4ZB5p5ekA6CU9I0NHcHfsXfUmGJra8zte4veUJVweMoKXej1f53ndzi/Qr3q65r9Vr1aorUajth6F5hsLZzM5Xp7LwR0rydyykBSveD71cMNS3JV2upv5YUaXU07Wapp2TifmVU0745JF9gb5op04/2VvDo/9fgiAG/uE8OjQyIs6sZFbZmLC5zvIr7CccjtXez09Qt3oHeFB73B3CistPLj4IAUVFpztdLx2ZVuGtT1/ScJzzayovP7PUeZut8XVPhHuvD2+PZ5OdXsYmRWVfZmlbEkuZktKEXsyS7EotsvOCC8HPpjUgehT9Jo5G4qqcfUXO4nPLef6nkE8dXmrRh/rowOf8NWhb+jh052PB31ge7C6GOPnfZGqi7GMfAs19tpTHkNcfwmC0FyJ+CUIQnMl4pcgNE8iqSGSGvUqKS3FTbwfjaNp6Jfcju7wEjS3MMwz/mZJ9lqe2/Ei7T3a8d3Qry/0CFuM+Yk/8eaetzHKRr4b+nWdyX0peQ36lU8hFyUBoPp3QqrMRyrNrLWd5uRHddcb+c07kC8Of0duVS5g64lSai7FrJprtm3t1orhIcMYGz7m1BP5qoKUtRP56N/oEv5EKk6xncvRB2ufe1E7TgP9ae7WVxWktI3oDi5GTliKZKkAwNx6DHe4G9mWt4NQ51C+G/oVzoaG9WP41+acLTy7/XkKTIUYZAP3xN7FNdGTkaVTT3Srmsq67A18f/gH9hTsBaCXb08+HDjnjM5/popNJVyx9EpMqokvL/uMTt7/WR6saeg2vIZ+i20MVW0noet7N5pX4ycn61NYYWbU28t52+MB7vP3Rmfy5McRP5+ysbfQOAt2ZfH00gQAru8ZxKxhUeekRN/Zsigq0+fuYVd6KaEe9vX2YSisNLMjrYRyU/2Jpza+TsyZGHPeG3ufL38cyOWpPw5TZVFxNMg41bPqoqzaSrVVrfWYv6sdVkUlv8KCo0HmhTFtGNPBr8nH928SzcVOx99398LTsW7SpSEsqoUrll5JoamIV3u/zLDgIQDo1r6IfttHqN5tsMxYcdL+Sf8S11+CIDRXIn4JgtBcifglCM1TQ+f0L57aFMJ5kZiUJJbfNZYkYR3xOnL2bqSSVPT/zKLPUNtd5QeL4imoLjhpE2uh4fYV7GfOPtudsPd1vKd2QqMsC/3q59AdXgKA5uSLdfAztlURgFR0FDl5DVLKWuT0TUgVuTisf4XJXq0YM+R5FluP8dWhb8ivzgdsPVFGhAxnRPCwUzcUN1cgp6xDProc+egKpKrCmqc0e3eUnnegdLkJjA2cvJR1aOEDsYYPhOEvIx/8Bf2KJzAm/MFrUUO4xsGXtPI0ntv+Aq/3efW0d7Nrmsae/L3MS1zAqszVAES6RvJSz+do5d6wBIAsyVwWOJDLAgeyK283t6+9i63HtpFalkaYy7m7u+X3lCWYVBNt3FvT0Sv2xBOqFf3fs9DtnweAtf8sdtsPpFsTJzQAPJ2MOLv7UFUVDpSjGgvxd2/y0wjAlK6BWBSVF/5KZO62TOJzynlnQnt8XZqmbFdTeWNlErvSS3G20/H5tR1PmpiwqioHs8vZklLM1pQidqSVUG1VuaqjH8+Obo3DBe5nci6N6eBHG19n7ll4gOSCKiot5nq383Q00DvcvWYlS6iHA4WVFh765SCbk4t56Jd4dmeUMmt4VJM1s6+yKLyz2pb0vr1/WKMTGgCrM9dQaCrC296bywIH2h4szUS380sAlIFPnDahAeL6SxCE5kvEL0EQmisRvwShZRNJDUE4E/ZuWMZ8hGHeeHTxv+IbNpB2Hm2JLzrE5tytjAkbfaFH2CyZFTOrMtewKGkxu/P3ANDfvx+ToybWbCMf+An9iieRLBVokozS9UaUfg+D3YmsreYZjeIZDd1uBqsJ+dCv6Ne+iFxwBOefr2Vqu6sYN+BjtlSkEOgYQCu3U9f1l44dRLf7G+T4RbUaUmt2bqiRQ1GjR6BGDgHjma2mqMXgiNppKlaXAPS/3Yz30VW8FdGHmbKB1Vlr+ebwd0xvMw2dVHfSrFqpZnnaPyxI/KlWI/DJURO5t+Pd2Osa10S+q08X+gX0YX32RhYn/cIDne5r9Ms7FUVTWHh0EQCToyad+LewVKH/4w50iX+jSTLW4a+hdpoKe/ack3EAdA5yZdOh3gRY/yJbrye+6BDdfbuds/Ndyqb1CMbX2Y7Hfj/EjrQSxn++g3eujqFnmPuFHhoAf8Yd49vjzb1fu7LtKVda6GWZjkGudAxy5dZ+oZitKuVm61lNojcnrXydWHJbD5LyK9HqWfdrb5AJ83SoE2e9nIx8eV0n5qxN5pMNaXy/PZMDWWW8e3V7AtwaF7f+65stGeSWmQlys+P6nkFndayFRxcDMD5iHHrZdtms3/gmkmJCDe6FGjnsrMcrCIIgCIIgCIIgnBlRfuoSU1JSgpub24UeRrOn2zIH/fpX0QwOvNfvZr5M/Y3hwcN4pfeLF3pozUpmRRa/JP3KbylLKDIVAaCTdFwWOIjHu87C3c4NNBXd+tfQb30fADWwG9Zhr6D5dWjYSaqL0a9/DXnPd0hoaEZnlH6PoLSfAA6edfsxKGbkhD9tyYzMbTUPa26hKNGXo0aPQAvqaWtG3cSk1PUYfrkByVLF/LBOvCTb3hO9pCfAyZ9Ax0ACnQIJcgqkzFLGr8m/U2IuAcBOZ8fo0FFMiZ5ItFv0qU9kNSGlb0J35C+kjC3g4InmEWH7co9E84hgvSmH+7c+gZvRlaVX/N7oBMmprM/awAObHsbV4MqfV/yOvd4eqosxLL4BOXMbms4O69iPUFuNAs5t/DqUW878tXuprrqDFU6O3NNqGjM63X1OziXYJBdUcu/PcSTkVaCT4MEhkdzUJ+SC9tlIzKtg0pc7qbSo3NI3hIeHNq6vjdBwa44U8Miv8ZRWW/FwNDChkz+9wt3pHup2Rs3uLYrKvqwytqYU8fmmdCrNCm+Nb3dWpa2OliQx5Z/r0Ek6fh/1C36OvlCUjPHLAUiainnqErTAhiU/xfWXIAjNlYhfgiA0VyJ+CULzJMpPCfUqLi0VQb0JKD3vQk7dgJy2gUHxf/OlI2zJ3YpVtdbcySnUr1qpZm3Wev5IWcqW3K1o2PKqPvY+jI8cx1URV+Lr4Gvb2FKJ/s/70SX8AYC1z/221Rmn6Q9Ri7071uGvIMVeg/6fx5Fz9qBf/Qz61c+g6ezA2Q/N2R/NxR/s3JATl9c08dZkPWqrUShdbkAL7n12DakbQAsbgGXijxgWXc+U1L1khrZlrt6EVbOSXp5BenlGnX0CHP2ZFDWRcRFjcTOe4nfbVIqctAo58S/kpFVI5vLaz2dsrfWfgyQdAVGtyTaXsiJj1TlZhfTT0YUAjIsYa0toKGYMP01Bzt2PZueKZfw3aCG9a7Y/l/GrrZ8zz07ux/cL/FhBGfGZG0AkNc6pCC9HFtzYlWf+TOD3/bm8sTKJ3RmlvHplW1zsz00cLTdZKTdZ8XOxq5M8KTdZuefnOCotKr3C3bl/cMQ5GYNQ22WtvFh8czfuWxhHXE45X25O58vN6ehlidhAF3qHe9AzzK3enwmTVWVPRilbUorZmVZMpeVE/44uwa6MjvE9q7EtSrKt0hgY0N+W0AD0Wz9A0lSUiCENTmiAuP4SBKH5EvFLEITmSsQvQWjZxOzrJSa/oICwkJALPYzmT9ZhuWIOxm+G0TH3MG5RrSmxlHGgMI7O3p0u9OguOpqmcaAwjiWpS/k7/R/KLScm1Hv59mRi1AQGBPSvnRAqP4bhlxuQc/agyQasl7+J2mFS48fg3wnL1CXI+35Ev+U9pLIsJMUEJWlIJWm1t3XyQ+k0FaXTNHD2b/Q5GzXO4F5YJs3HsHAqD6Ud4h7/TmQNfZ5MvUxWZTbZFdlkVmRhVs2MDBnBgMD+9ZamqlFdgm7TW+j2fIeknKh5rzn5obYaiRpxGZgrkIqSbV/FyUhFKeiri5iYn8X7Hm4sPvpLo5IamqbxT8YKqhUTHT07EOoSWtOwPLUsjc25W5CQuDpyAgC6rR/YEhoOnlgm/4Tm277W8c5H/GofNABy/iSuIu30GwtnzdGo4/Vxbeka4spLyxNZcTifq7/cyZyJMbT1O4uybv+ntNrCV5sz+HZbBpVmhSA3O3qF23o89A73wNfFyJNLDpNUUImvi5G3x7dHL198DcxbqhAPB+bP7Mry+Dw2pxSxNaWYjOJqdmeUsjujlI83NOw4Ho4GeoW50yvcnStj/ZDPIhFdYi5haeoyAK6OssUoSjOQ42zJWKXPmZXlE9dfgiA0VyJ+CYLQXIn4JQgtm0hqXGLO5gO+8H+c/VF63Y1+zfP0NZlZZoCNOZuaNKmRWHKUH4/M55roybRuYMPnC6XUXMq+ggOUW8ooNZdRZimj7Pj3PQX7SC1LrdnW39GfMWGjGRM2mmDn4DrHkvLiMSyejlSaiWbvgeWqL2vdsd9osg618/WYO18PVhOU5yKVZyOV5yCV50JFHppfrK3c0TkoL9VQWmBXLFN+wvDzNRhz9hI2fzLBve5C6XkXGBwaeBDV1odk3ctIlbbG6KpXK9TokaitRqL5dzrlihf9H3cyIeF3PnZ3Y1/hfhKKj5zxz+CnBz/ni/ivav7b1eBKrFcHYr06cLTkKAD9A/oS7ByEVHAE3ZY5AFiHvlgnoQHnJ361jrkOKXsp2ZJKQcEhvLzanvNzXuokSeLabkHEBLhw38I4UgurmPLVLp4b3ZqrOp1dUrHcZOW7bRl8tTmdMpNS83hmiYnFe3NYvDcHgABXO7JLTehlifeujsHbuWX3xLCqVl7Z9RrxxYcxSHoMsuH4lx69bKCNe2tubX/zeS0FZtTLjI31Y2ysrVxUelEVW1OL2ZJcxL6sMsxWtc4+sgStfZ3pHWFLTrX2dWqyOPFJ3OdUWCuIdouip28PAPTbPkZSLaghfdGCepzR8cT1lyAIzZWIX4IgNFcifglCyyZ6agjC2TCVYvykO38YVJ7w9aa1e2t+HPZdkxw6vyqf6atmcqwqDz8HX34YNtfWY+IilFB8hDvX3UOxufik29jp7BgaNISx4VfQzadrzR37tahW5IOL0K+cjWQuR/WIxHL1XPC4RMvAFCVj+Odx5NR1gK2vh3XoC6hRw0+5m5SzF/2KJ5GzdwGgekZjHfoCWvighp+7sgDjV4N4xFliubMTV0eO5/Gusxq8+9eHvuXDAx8D0N6jPUdLjmJSTXW2e7//u/Tx64lh3njkzO0okcOwTvj2nJf6OpXJP/UjSVZ4128k/Qc8e8HGcSkqqrTwyK/xrD9aCMCUrgE8eXk0dvpTrEaqR5VF4ccdmXy2MY3iKisArXwcue+yCPpEeLA7o5QtyUVsSSnmYE4Z6vEroacuj+b6nnUTrS3NRwc+4atD35xym5d6vcDlIaeONS3VkeIjTF0xAxWVTwZ+SHffblCRh/GzXkjWasyT5qOFD7zQwxQEQRAEQRAEQWhxRE8NoV57DxygU4cGNlgWTs/OFaXjVPrt+hxJg4TiBPKq8vBx8Dmrw5oVM49ufpxjVXkA5FYd47kdz/N23zcvaBPd+hwuTuDOdXdTYi7Fz8GXUOdQnI3OuBpccDG44GJ0IcDRn4GBA3E2ONV/EMWMHPcz+i0fIJXYVnSoIX2xjPscHDzO46u5yHhEYJk0DzlhKfrVzyCVpGFYPAMlahjKoNlodi5IpjIwlYG5DMlUjpyyGnnfvBNN0fs+iNL1RtCd4Z3njl5Yh77A5BUPstzZiWWpy7g39m6cTvZv+B8/Hplfk9C4N/ZupreZhlW1klB8hH0F+9hXeIC4wjiiXKPo5dcTec9c5MztaAYnrMNfPmlC43zFrxiXcJIqjhKfvYn+5/xswn95OBr47NpYPlqfygdrU1iwK5sD2WXMmRhDsPvJVykpqsbBnDK2phTX6a8Q7unAPYPCGdXeF51s+9kaEOXJgChPwFaaantqCZqmMbSN97l/kRfYlpytfH3oW8D2+xnuEoZFtWBRrVhVCzvzdrEkdSnv7/+QQYEDsNfZX+ARn1+apvHGnrdRURkePNSW0AB0Oz5FslajBnRBCxtwxscV11+CIDRXIn4JgtBcifglCC2bSGpcYqxW64UeQoujdLsJj51f0MFkYr+9HZtytjAuYmyjj6dpGq/sfp19hftxMbjwZLfHeXrbs6zP3si8xAVc1+qaJhz92TlUdIg7191LqaWUGI/2fDDgPVyMLg0/gNWEvH8++m0fIJVmAqA5eqF0vx2l+y1nPhHfEkkSapsxmCMGo9v8Lrodn6I7ugLd0RWn3E1pPxHroCfB2a/Rp1bbXkXXg4sJNx0kxQjLUpcxMXriKfdZlPQLb+99F4Bb29/M9DbTANDLetp7tqO9ZzuuYcqJHcqy0a97CQDrwMfA9eR3yZ+v+NUueBBLDh/lQPUxqCwAR6/zct6LxQ8J8/jp6M846h3xcfDB18EHH3vbd18HX8JcQglwCjh1L5ezIEsSdw8Mp1OQKw//cpC47HImfL6Ta7oFopdrJ7xUDRKOlbM9rYTS6to/H8Hu9tw1MIwrY/1O2R/D1d5wSSQzAPKq8pi9/Vk0NCZEjq/5/fyvYcFD2XZsOzmVOcw7soCZbWdcgJFeOCsyVrIrfzd2Ojvu63iP7cGqInS7bYkgpfd9jVpJJq6/BEForkT8EgShuRLxSxBaNpHUuMR4urtf6CG0PK7BqG3GMCBnNfvt7diYs+mskhrzE39iScofyMi80utFevv3orC6kNf3vMmcfR/Q2asT7T3bNeELaJz4okPcdTyh0cEzhg8GvIezoWGNfaX8BOSEP9Dt/R6p3FbTXnPyRel5J0rHaWB0PJdDb56MTiiDnkTtMBn9ytnIqevQJBnsXMHojPbvdycflG43owX3OvtzShLKiNeYtGAkbxgNLIr7iqujrj7paqE/Upbyyq7XAJjeehq3tLvp1MfXNPQrnrCVGgvoitr5hlNufr7iV/ugfnD4K+LsDEgJy9A61534bam+T/iRd/fNqfnvIyWJ9W5nlI2EOIcQ7hJGuEsYkW6RTX5X/4AoTxbf3J37FsWxP6uMTzeeunm7s52OnmG23gq9w91p1YT9FVoCq2rlya1PU2QqopVbNA92qr/Rtb3enrtj72T2tmf5+tC3jA0fg7f9pZHYq7JW8e6+9wG4oc10/B1tPV10u75CslSg+rQ/bfm/kxHXX4IgNFcifgmC0FyJ+CUILZtIalxifLwvjbtRzzelx+30X7CMjzxga+5WrKoVvXzmv15bc7fVTCje2/FuevvbJqYnRV3N9mPbWZ21lie2zub7Yd+evJTTeRBXeJC7199HmaWMjp6xzBnw7qnHo2lIefHICX8gJyxFLjhy4imXAKw970KNvbbhTbAvYZpXKyyT59saneuM5773hEsgV3S9lzmJn3HEUsj+1BV0DK87qfdP+gqe32FbcTElehL3xN512lJpcsKf6BKXo8l6rJe/AfKp7/w/X/GrtVsr9MgU6yDnyG/4XSJJjV+Sfq2JPze2vYHO3p04VpVHXlVezfecqhzSytIxq2aOlh7laOnRmv1bu7Xi9T6vEuwc1GRjCnK358cZXfh+eyYZxVX1buPvak/vCHfa+zufckXGpe6L+K/Ylb8bR70jr/R+6ZQJqMtDRjDvyE8cLDrIp3Gf8WS3x8/jSC+cbw/PJbcqlwBHf65vM9X2oLkc3a4vAVB639PomCuuvwRBaK5E/BIEobkS8UsQWjaR1LjEHE5MpFvnzhd6GC2O5t+Jdr5d8FQyKKSSvQX76ObT9YyOkV6ezuNbnkLRFK4IG83UVtfWPCdJErO7P8mhFYfJqMjg5V2v8lLP589rfw1N0yi3lBNXeJDHtj5JuaWcTl4dmdP/nfr7LKgKUvYu5MS/kY8sQy5KOnEs2YAaPgi1zVjUtleC3u68vY4W4zy+Z85dbuTyxB/5nUoWb3uFjmHDQJLQNI2tuduYn/gTG3M2oaFxVcSVPNTpgdP/bFYXo1/5JABKr7vRfE6/+uh8xS+jzkhrl3AOliURl78Xv+pisHc/5+e9kJan/8PL/1llc0fMbSf9N1Q0hZzKXFJKU0gpSyWlLJU1WWtJKDnC9JUzebHXc/T179NkYzPqZW7sE9Jkx7sUbc3dxpfxXwPwRNfHCHcJq7tRVRFy/GJ0+xeAJPHggAe4eeez/Ja8hMlRE2nl3uo8j/r8yqzI4rvD3wPwQKf7apI+ut3fIlUXo3pEorYe0+jji+svQRCaKxG/BEForkT8EoSWTSQ1BKGJaD1up9/6h1ni4sTGzLVnlNQot1Tw0KZHa0o5PdF1Vp0JRVejKy/1eoFb1tzO3+n/0NO3O1dFjGuSsZsVM4WmQvKrCyioLqCgupCC6gKOVR0jtzKXnKpccitzqbBW1uzT2asT7/V/u3ZCw1yJnLoOOXE5ctIKpMqCmqc0nR1qxGWorcegRg0De7cmGbtwHkgyE3o+zu87ZvM3Fdyx9V3W+YSwIPFnUspSazabEDmeWV0eRpZOcbe8piEVJKDb9DZSxTFUzyiU3veehxdxZmJ8u9iSGkY9wxL/Ru0wudbz+wr2M3vbM0xrfR2Tok7dZ+Ritz5rA09vs/VZuDpy/GlX2egkHUFOgQQ5BdIvoC8AN7e7kVlbHudAYRz3bXiQO2Ju44a200/9syCcF/lV+cze9gwaGuMjxjEydMSJJzUVKX0zun0/Iif8iaSYap7qufRhhsUMYEXBbt7Z9x4fDnj/vCbSz7d3976HWTXT07c7gwMvsz1oqUK34zPg+CqN06wmEwRBEARBEARBEM4PkdS4xESGh1/oIbRYatRw+m10YQkqm1P/5t7ODzR433f2vktSaTLe9t680edV7HT134Xf0SuWO2Ju44MDH/HGnrfp4BlDtFt048arqSxLW86X8V+RVp7e4P3cje709OvBU90ex1F/vPdFVRH6Nc8hH/odyVpds61m54oaOQQ1aoQtkWFsWM8N4eITEzaMtvve4ZC5kCvT56Nk2CY3nfSOXBk+lklRVxPqElp3R01Fyk9ASt+EnL4ZOX0zUlVhzdPWEW+AvmF9GM5n/GrvYVs5st/OiJywtFZSo9pazdPbniOzIot39s6hp29Pwup77c3AjmM7mbXlCRRNYVToSGZ1eeTkE9eaBuU5oCogAUjHS/FI+Ont+GzQx7yx521+Sf6Vj+I+4WBRPM/2ePqClsq7VGmaRmpZKnsK9rE46RcKTUVEu0Xx0L9/lzQNeffX6Hd+gVScUrOf6tMeNfYa5LiFyLn7eHD/P6wN8mPbsR1syN7IgMD+F+YFnWNbcreyOmstOknHQ50erPkdkPfPQ6rMQ3MNRm034azOIa6/BEForkT8EgShuRLxSxBaNpHUuMRUVFTgIZolnRuSTM8ONyAnfckRSxE55Vn4OweedrdDRYf5PeUPAF7p9SI+Dj6n3H56m2nszNvF5twt3L72bt7t9yYdvDqc0VC35G5lzv4PSShOqHlML+nxsvc6/uWJt70X3vbe+Dv64+/oh5+jH/4Oftj/3wS0lLIWw7IHTjT8dgtBib4cNWqErVm1znBGYxMuTpIkMbHDrby461UUSSLcbOFaq5FRg1/EMaRv3R2qCtHt/QHdnm+QyrJrPaXp7dGCeqB0vA4tpHeDx3A+41eMZwwA8UYjaso6MJWBnQsAH8d9SkZFBgBm1cwru17j44EfNLu72Hfn7eGBjQ9jVs0MChzIM92fqn9lRWUBuriFyPt/rNUP5/8ZQvvzVN8HifFsx2u732RN1lpmrLqR13u/QpRb5Dl8JYKmacQVxrEjbxd7C/axr2A/JeaSmucddA682vtlW0klSxX6vx5Ed+g3275GF9R2422/j36xIEkosdeiX3I7IUkrmVZUxNfurry7/336+PduVL+oi5lVtfLWnncAmBw18cTPqrUa/baPbP+3551n/bdMXH8JgtBcifglCEJzJeKXILRsLeuTqXBauXl5BAc1XRNXoTbXjtPoePhz9hh1bN7/BeP7PH3K7TVN451976GhMSJkOF18Op/2HLIk80LPZ7lnw/3EFx3itnV38XKvFxgUOPC0+yYUH+H9/R+yOXcLAE56J2a2ncFVEVfiZnQ7s0lZSyW6dS+j3/UVAKpHJNaRb6EF9Tz3zauFC+LKiCvRAP/KYgZs/BBdaSragiko/R5G6XU3yDqkgiPodnyOfHBhzaodzeCAFtgDNbQvakgfNP9OtibnZ+h8xq8wl1Ac9Y5UWitJllUiEv9Gjbma/QUH+PHIfAAe6fwQc/Z9wI68nSxNW8aYsNHnZWxnq8xcxkdxn7Dw6GI0NHr69uDlXi/UnqxWFaTU9bayRInLkVQLAJqks03uahqg1XyXVCty2gaMaRuYFNKXVh3v5NHkeaSWpXL9yhu4q8MdXNtqiihH1cQyK7JYmvonS1OXkVmRWes5O50dMR7t6eTdkVGhI219NMqPYfj1RuTsXWiyHmXQbJSOU8HoWPvARies47+Gf57g1v0/8JuLE6llqSw6upgprWqXYmvufktZQnJZCu5Gd25tf3PN47odnyOVZaE5+6PGXnPW5xHXX4IgNFcifgmC0FyJ+CUILZtIaghCUzI40tczlj3lB9mUtuK0SY21WevYmbcLO9mOezrcWXcDcyXy4d9ANoKDO5q9O9i7427vzqcD5vDYtmfYlLOZRzY9xqNdHmZiVP3lMQ4XJ/Djkfn8mboMDQ29pGdS1ERuancD7nbuZ/wypZy96JfejVx4FACl8wysg2bXnRgTWhRZkhkfeRUA1ujx8M9j6A79hn7Da8jJq8HoZPt+nOobg9Lt1mbZDF4n6Wjn0ZadebuIszPSauWTVLgG8vxBWxLyirDRTImeRJW1ig8OfMQ7e9+jv3/fU/4+aZoGcMFWdGiaxl/py3l37xwKTLYSYKNDR/FY10dqlbyT4xah3/AqUumJSXLVvzNK7LWo7caBnWvdg5dkoN/6AfL+ecjpm+iavol5IT2Z7dWWjSWHeGffe6zLXs+z3WcT4BRwzl9rS1ZuKWdlxmqWpv7JrvzdNY876Bzo7deTTt6d6OzdiTburTHIJ1YXSMfiMCyeYZuot/fAMu5ztNB6Vln9S9ZjHfEa9m7B3LXnA17w9uTTve/hY+fB4JBhzW5lUn2qrdV8fvBLAG5uNxMXo201FmXZ6La8B4B14JMNLpEnCIIgCIIgCIIgnB9SdXm5dqEHcS6UlpbiGxjIsawsXF3rmYC5RGma1iImIi5mh7I2M23TAziqKit7voEhfFC921lUC5P/vpb08gxmtp3BXR3uqL2BpqH/9UZ0icvr3V+TdJjbTeAFLzd+y/gbgJltZ3BnzO1IkoRJMfFPxkoWHV3M/sIDNfsNDx7GXR1uJ9g5uOEvqrIAqTARqSAROXc/8v4fkVQrmpMfllFvo0UMbvixhJZD05APLkK/4gkkc7ntISTU6MtRut9qKz/WhPHmfMev9/a9z9yEH5ioOPBM2mHmeHnzuasjXnae/HT5PNyMblhVK1NXzOBo6VHGhl3BMz1m13usdVnreWXX65RaSvGuKfPmZfv/dl44GZzQyzoMsgG9pEcvGzDIeqJcIwl3DT/tWAuqC/jm0FxSy1IIcwkj0jWCSNdIotwicTY4k1KWymu73mB73g4AwlzCeLzLo3T37XbiIFYT+lXPoNv7HQCavTtK+wmosdei+cY07E0rzUC/9UNbLwLFjAb8FNWLN6VCqhUTTnonHun8IFeEjRZ/i07hYGE8Xx/+lvyqfCqslVRZK6m0VlJhqcSqWWu2k5Do4dudK8JGMyToMhz0DvUeT05cjv6Pu5AslaieUVgmfAceEQ0ej3rgZ2bsfZV4O1uSJNajPfd2vLdBqwsvZl8f+pYPD3xMkFMgP4+Yj/H4CjL90nvQHVyEGtgNy3W/N0kcE9dfgiA0VyJ+CYLQXIn4JQjNU0Pn9EVS4xJz4OBBOrRvf6GH0aKpmsqoxZdRoJm5z6Tn+mtW11uL+/uEH3l33xy87L1YfPlPOP1fM11519cYVj6JJhtsfQeqS5Cqi6G6GMlUeuJ8Dh583GEEn+RvBmBU6OV423vze8ofNTXV9ZKewUGXMa31dcR4nuLfX9OQipORMnciZ+1Eyo+3JTOqiupsqrQZi3X4K+Dg2Yh3SWhRilPRr3sZzTkApetMcA87J6c53/FrRcYqHtvyBG3dWvFsUTlTpSwUSeLNyOu4rOu9NdvtK9jPTatvRUPjk4Ef1koUKJrCZ3Ff8OWhrxs9jgEB/ZnZdgYdvWLrPFdlreL7hB+Zm/ADldbKevf3dfChyFSMRbVgJ9txY7sbuL711JoJXABKMzD8fhty9m40JJS+D9hKijX2DvXSTPTbPkTe+wOSaiHV1Y8nQluxryINgMGBg3iy2+ONWinWklVYKvgk7jMWJP6MinrS7cJcwhgTNppRoSPxd/Srf6Pj8VyOW4Ru87tIaKhhA7Bc+SnYu5/52BL/4oe1jzDXxYEq2VZGbEBAP+7qcCfRblFnfLwLrdhUwrhlE6iwVvBCz2cZFToSAClzB8Yfr0RDwnL9n7ZyeU1AXH8JgtBcifglCEJzJeKXIDRPDZ3TF+WnLjEms/lCD6HFkyWZ69pM4/1DX/GenZWKlXdx2/BPa90hUGwq5ot4Wy+KO2Juq5PQkI7FoV/zPADKZbNRut1c63lUK1LWLvT/PI6cH89d2xcQENaZ53XFLEs7sbLD39GfCRFXMS5iLF72XnUHa65EytmDnLUDKWsHctYupKrCel+X5hqM5hmN6tUKLaw/auQw0TtDsHEPw3rlp+f8NOc7fsV4tAPgSGkST7mHoZRKXF5ewYjVb2F1ikRtMwaAjl6xXB05noVJi3l512vMGz4XO50dJeYSntr6TE0PmynRk7gmejKF1UUUmAooqC6goLqQ/Op8qqzVWFUrFtWCVbVgUa1UKVXEFR5kffYG1mdvoKt3F25sewO9/HqiaAp/pC7lk7jPya/OB6C9R3vGhI0moyKDpNJkkkqTOFaVx7GqPAD6+vfh0c4PE+xcu66slLIOwx93IFUVodm7Y73iA9TIIWf35rkGYR32MlLsNej/uJuwwkS+PZDLl+2G8IkphdVZazlamsxngz7C28H77M7VQqzNWsfru98kt+oYACNDRjAsZBiOOgccDY446m1fTnpHnA3O9d91Vp6DnLoROW09cuoGpLKsmqeUTtOxDn2h0Q2vnaJHcpvBiSm/zuRTFzsWubiwPnsjG7I3MSZsNLfF3IK/o3+jjn0hfHPoWyqsFbR2a8XlISNsD2oq+lW21VZq7JQmS2iAuP4SBKH5EvFLEITmSsQvQWjZxEqNS8zRpCSiIiMv9DBaPE3T+Gbtw3yYvxGASSEjeaTn0zVNcl/b/SY/H11Ia/fWzB36NTpJd2JncyWGuSORCxNRooZhHf/tyZMHigXdjk/RbXobyVrNeicXXgwIJsI9momhV9A3oC86ozP8Wy+/JA05c8fxJMZOpLx4JE2pPXadEc0vFjWwO5pfLJpXKzSPKNEvQ7jgznf80jSNy/8YTaHJtlLJzejGL4Tgc/hPNEnGOvId1A6TAFvz7Yl/X0NBdQG3tLuJQYEDeXTzY2RVZmOns+PJro8xOmzUGY8hpSyV7w5/z5+py2rKDrV1b4NZtZBUmgRAkFMgd3W4g+HBdfsclJnLSC5LQZZkYjza135eU9Ft/QDdhteRNBXVLxbLlZ+De2hj3q6Ts1SiX/sSut221SoHfVtxn6cTOaZCwlzC+HTgh5d0YuNY1THe2PM2qzPXALZ/z8e6PEof/96n37m6BDl9ky2BkbYBueBIrac1nREtsBtKh8moMZObJBEtpW3CsHg6qZqZOcFR/CNVAWCUjUyJnsQNbafjZnQ76/OcSzmVOUz4azJm1cx7/d6mX4Ctt4i8fz6Gvx5EMzpjvmkDOPs22TnF9ZcgCM2ViF+CIDRXIn4JQvMkyk+JpEa9KisrcXQUk9Pnhabyy4KRvKwrQZMkRoaM4NkeT5NWns61/0xD0RQ+HvgBPXy719pN/9dD6PbPQ3P2xzzjH3CsZ4XF/ytKwfDPY8ip6+ofChLojEiKqe5zLgG2BEZgN9TAbmi+HZpdU2fh0nAh4tf9Gx5iQ44tOfliz+cYGTwM/d+PoNs/HwBr/1kove4CWc+KjJU8tuVJ9JIenaTDpJoIcgrijT6v0tq91VmNI6cylx8S5vFL8q9UK9UAuBlduandjUyMnFC7lNSpVOQjp2+03c2fuh6pJBUAJfZarMNeOqcNkeWkVeiXPYBUmUe60YEbwyLIsZZfsomNcksF848sYG7C91RYK9FJOqa1vo5b2t2E/cn+HRQzUsZW5NTjKzFy9yFpJ8pUaUi2pHRYf9TQ/mjBPcHQ9L8zUsZWDAunIVkq2BPSjXf8AtlVsBcAF4MLN7SdzpToSdjrTrwOTdPIrszmSEkix6qOEe4SThv31rgaz/812nM7XmRJyh909e7Cp4M+siX7TGUYv+iPVJmHddBslJ53nP5AZ0BcfwmC0FyJ+CUIQnMl4pcgNE8iqSGSGvXauWcP3Tp3vtDDuGRIeYf4Z+GVPOXtgVWS6O/fD6tmZUvuVgYGDODtfm/U2l4+9BuGJXfYanlP+QkttF/DT6ZpyPG/2FZtVOSBtQpJtdbeRDYcX4XRrSaJgWvQSQ4oCBeXCxG/vk/4gXf3vc+AgP683fcN2+SnpqJb9TT6XbYScmpAF6yj3kX1jOb+jQ+xMWcTAP38+/JCz2dPP2mraWCpsPXNMZWCqdT2vboUzdELLbAb2LkAttJ1C5MWo6gK17aaUv+xzZVQmY9UmY9UmWf7//mHbYmM/Pjap9bbYx36AmrHqWf/ZjVEZQH65Q+hS/ybdL2OG8Nbk6NUEO4SxieDPsK7vjJ5LUyFpYL5iT/xQ8I8Si22/kgxHu15stvj9Se/KguQk1YhH/0HOWUNkrm81tOqZxRaaH/UsAGoIX3AweN8vAykzO0YFk5FMpejBPdkTZ/b+eDIXBJLjgK2Xi4TI68mvzqfIyWJHClJpNxSXuc4QU6BtHFvQ1v3NnTwjKGHb/dz2tAxqTSZa/6eiorKN4O/oINXBwB0a15Av/1jVI9ILDNXQUMThQ0krr8EQWiuRPwSBKG5EvFLEJonkdQQSY16iaB+/unWPM+mA9/woJ8vpuPzNDpJx08j5hHm8p8yL8VpGL8djmQuw9rnfpT+j579yRULWKvBUmX77ux7Tu/EFoRz6ULEL7NiZnPuFnr59ax11zmahhz3E/pVzyCZStF0dij9HiYrZgKv7n2LTl4dmd5mWk3JuTr+nahOXomcvBbJVHLSMWiSjObTHjWkN1pQL9TgXmDnjFSYhFSQgFRw5PhXAlJpBpKl/obh/1J92qOG9rP1xgnuXZMwOW80Dd2G19BvmUO6Xs/MsChy1aoWk9hQNAUZuc7EfKW1kp8SFzI34QdKzLZ/73CXMG5pfzPDgofULkNYXYJu3w/IR/6ylQrkxKWa5uiDGj7IthojrD+4BJ6X11UfKWsXhoXX2X4HHH0wjXyTpXoLn8R9Rk5lTp3t9ZKeCNdw/Bz8SC5LJrMiq8424yPG8UTXx85ZYuOhTY+yNmsdg4Mu440+r9peR+FRDF8PQfpfe3ceH0V9/3H8tUfukIPchISEhCSQAAFEoOLF1UdFDhVarSj1qFc9QKtA8arKj3pUpdaWotbWW0FtRQVFEBArAnJfCYQrQMhJbnLtzO+PxdWUgECFzSTv5+ORh2Fmdvczw/J2dj/zna/RSOMVr2J0Hfqjv67Ov0TEqpRfImJVyi8Ra1JTQ02NFpWWlRHRsaO3y2hfGmrwfekC1jaWcXt8PNVmE1elXsk92ZO+28bViM+bl2EvWIsR35/GK98Fu9NrJYu0Rq0yv6oO4vzkPhy7lwBgxPWj6WdPY0YcveLeNNwjL46UQU0x9n1fYt+1GFvB+mZfVIN7JBX+IZh+oe5Gg28HbBX5nltENdvWZm9226Fj1jv9ITAS8+gPIfEYiT/BSPjJyd3S7ixwfDUL54rHjzY2ulJo1JHcIYnZFz5PhMUaG01GE8sLvmBe3nusLloDgK/DFz+7Hz4OH/zsvlQ2VnlGKiQGJ3JTjxsYnjCseTOjqQ7Hun/iWPknbHWHPYuN6EyMlOEYKcPdk1cfr1nmBbbibTg/vA17SQ4AruyJ1Jw/hXn7FrC2ZB0JQZ1JDUslLbQbySFJ+Ni/m6i8sqGSnPJcth/OYVv5dj7LX4yBwT29J3NVt1/86LWuL9nAjUtvxo6dd0a8QVJIEpgmzvcm4tj1Ga7kITSNe+1Hf11opfklInISlF8iYlXKLxFrOiNNjSeeeop/f/ABObm5BPj7M3DgQGY88ghpaWkAlJWV8eiMGXy2ZAn5+flERkYy+tJLeeiBBwgN/W7SSP/g4GOe+5WXX+bn48d7/rxs+XKmTJvG1m3b6Ny5M1Pvu49rJ0w42VLV1DiOgwUFdIqL83YZ7Y495yN8Pvg1u/wC+Oqi+xiV+Sv87D7YCtZj3/ExjtyPsZXvwfQLdc+jEdrZ2yWLtDqtNr9ME/vmt3AueRhbQxWmww8zLNHdyDhSjs10tfgwIzoLo+tQjK5DMaMz3aOoWro6vaoA+/6vse//Gtv+VdhKtmPDxPQLxYzohhmZhhmRhhHRDTMsCYKiwCfoR5kU+kxzrJmD8/OH2ed0cl1iMkVmPd3DM3jpojknP0+IFxUfKeb93f/mX7v/TdGR4h/cPiG4Mzd2v4GfJgzH+f3GteHCvvU9nF8+ga3ygHtRRBquPtdhpAxr/bcJbKrDsXwmzm9eAMAI70rTyD9jxmWf0tO8lvsGz278E3bsPDv4j/wkdtCPVmKj0city25nfekGxiaP5v5+vwPAvvZlfBZPx7Q7abxuCWbH1B/tNb+v1eaXiMgPUH6JiFUpv0Ss6WS/0z+lS8G/WLGCm2+6iXP69qXJ5eLBhx9m5JgxrF+zhqCgIAoKCigoKOAPM2aQkZHBvn37uGPSJAoKCnjz9debPdec2bMZMXy4589h32t67N6zh8vGjePXN9zAP156ic+XLuXW3/yGuNhYhg8bdioly38pKCxUqHuBkXYJRvLFdN39OUmbF2AU5+PIXYCtusCzjekTQNPIP6mhIXIcrTa/bDaMnlfR0OUCfD651z3vQemOZpuYPkEQ2BEjKhMjxd3IIDj25J6/QxxG97EY3ce6/1xXAU317uaFBRoXJ+I65yZMpz+Ji6by8r7d/DIhkW2Ht/PnzX/h7t6TvF3eceWW7+DFbX9n2cHluI42rcL9whmbNJpLk0YS5BNEo6uBeqOBBlcDDa56sNnICEtv3swwDey7luBYPtMz34nZIY6m836LkTneOiP2nP64hvweo+tQfBZMwn54Fz5vjMY14A6MHpdjhnc9qffq1d2uIq9yF/P3fMi0lffzzyEvuUdT/A8qGip4f9e/eXvnXIrrivGz+3FTjxsBsO1ZjnPJgwC4Bk85Yw0NaMX5JSLyA5RfImJVyi+Rtu1/uv1UcXExCcnJLFq4kPMHD25xm3ffe4/rbryRsqIinE73h3P/4GDeefNNRo8a1eJjpj/wAAsWLmTt6tWeZddMnEh5RQXz//Wvk6pNIzVapnsKetHhPfi+fDE2V71nkekT5P6Cs9slGF2HgO+xo5hExM0S+WWa2A6ucTcdAjpiBnYE/3Bw+nm7slbNvvkdnAvvZmmAH3fGRAHw7HlPMzjuJ16urLkmo4lXcl5jztYXaTKbAMiO6M24lCsYEn/RyY0uMVzYDqzGnvths+a26ReKa+AduPpcBz4BZ3I3zqwjh3EumoojZ75nkRkQjhHXD7NTX4xO/TBjern30WYHm6NZw6PB1cBty+9gfekGEoI7848hLxHqG9rSK53Q3qp9vLXzbebv+Yg6Vx0AEf4R3NN7EiMShmM7vAufV0diq6/A1WMcTZfMOqNNQkvkl4hIC5RfImJVyi8Razorc2rk5eWR2bs333z9NZmZmS1u8/d//IMHH3qI/Xu/uye4f3AwneLiqK+vJzk5mRtvuIGJ11zjmRRy6IgR9MnO5qknnvA85p+vvsq9U6ZQdPDYSSVboqZGy1wuFw6H44c3lDPCvv4VnKv+ipEw0D16o8v5mrhb5CQpv9o2+/YPcH54G38ID+WN0A6E+Ybx5vBXiQqI8nZpAORX5/PQqkfYWLYJgAs7XcAtPX5Nt7BuJ36gacKRMmyFm3DsWIh9x8fYaku+W+0bjKv3NbgG3gH+YWdwD84i08S+7X0c6/+J7dDGZs384z7E5gDfIFx9rqO470QmLruFgtpD9I86h+fOf7b5CJfjKKkr5T+HvmLJ/s/58tB/MI/OW5MWlsYvu13JiM7D3I2nugp8Xr8Ue1keRlw/Gq+ce8b/X6z8EhGrUn6JiFUpv0Ss6Yzcfur7DMPgt1OmMGjQoOM2NEpKSpj5+ONcf911zZY/eP/9XHThhQQGBvLZ4sXcNXkyNdXV/Oa22wAoLCoiOjq62WNioqOprKzkyJEjBAQcewVjfX099fXffWiuqqo63V1r03J27KBHRoa3y2i3jOxraci+1ttliFiS8qttMzJG46rYy91fzOSbAH9yKOfBVb/nzxfMaj6Z9o+s3lXPmzveJrdiBxlh6WRH9iYjLN0z6sI0Td7d9T7PbvwTda46gpxB3Jt9NyO7XOK5GMOjugj7ns+xHd7t/infg+3wHmwNzc9JTP8wjNQRGGkj22Zz22bD6HE5Ro/LwdWArWgL9oPfYDu4xv3fo/OGNHuI6YL6SpwrZxGzYwHPnH8P1295htXFa/jjhmeY0ufeYx5jmAY55bl8UbCCFQX/Yevhrc3Wnx83mKu7XUW/qL7f/V0ZTfjMvxV7WR5mh040jn3prBx/5ZeIWJXyS0SsSvkl0raddlPjrsmT2bJ1K0sWLWpxfWVlJZeNG0f3jAwemD692brfTZ3q+T27d29qamp4etYsT1PjdDzx1FPMmDnzmOXrN20iKCiI3llZ5O7cyZG6OjoEB5OYkMCWbe77VyfEx2OYJgeOjgLp2aMHu/bupaamhsDAQFKSk9m0ZQsA8XFx2B0O8vfvByAzI4P8AweorKoiwN+f9G7dWL/JfRVnXEwMfn5+7Nm3D4DuaWkUHDpEeWUlfr6+ZHbvztoNGwCIiYoiKCiIXXv2AJCemkpxSQll5eU4nU56Z2WxbsMGDNMkMiKCsJAQdu7eDUBq166Ul5dTUlaG3W6nT69ebNi0iSaXi47h4URGRJC7cycAjY2N5O/fT1GJ+yrRftnZbNqyhYbGRsJCQ4mNiWF7bi4ASYmJ1NXVcaioyP131bMn23NzqauvJ6RDBzrHx7N1+3YAEjt3pqmpiYOHDgHQKyuLnXl51B45QnBQEEmJiWw+erw7d+oEwP6jxzure3f27NtHdU0NgQEBpKaksHHzZgA6xcbidDrZd/R498jIYP/R4+3v50dGWprneMdGR+Pv7+853hlpaRwqLKS8ogJfHx96Zmbyzfr1AERHRhIcHOw53mmpqZSUllJ2+DBOh4PePXuybuNGDMMgsmNHwsLC2Llrl/t4JydTXllJSWkpdpuNPr17s2HzZpqamugYFkZUZCQ5R49316QkampqKCx2TyDbt3dvtmzbRn1DA2EhIcTFxrLte8e7vr6egsJCz/HO2bGDI3V1hHToQEJ8PFuOHu+Ezp0xXC4OFLhvW9IzM5O83bupra0lKCiIrl26sGmr+8ud+E6dsNts5B9wf4mU2b07+/LzqaquJsDfn7TUVDYcPd5xsbH4+viwNz/f/Z5NT+dgQQEVlZX4+fnRIz2ddRs3ut+z0dEEBgSw++gorPRu3SgqLuZweTk+Pj70ysxk7YYNmKZJVGQkIR06kHf0PdstJYWyw4cpLSvD4XCQ3bMn6zdtwuVyEdGxIx3Dw9mRlwdASnIylVVVFJeUYLPZ6Nu7Nxu3bKGxsZHwsDCio6LI2eGevyC5Sxdqjxyh8Oh7tk+vXmzNyaG+vp7QkBA6xcWxLScHgC4JCTQ0NlJw9D2rjPjuPVtdXd0qM+JQURE2m00Z0ZYzwvc8MiLO5cmitfw8Po7VxWv4w7InmX7R1DOSEa64Rh75egaHGtzvy0/z3ec0TpuT9JB0Mjqks70shy217n/f3YO6c03kBJKaulDf0ODOCNOgm20fgTnvEpC/FHsLE8Ob2Kj3j6I8oh+27qNoiB9A/sFCqILMJsjfm9fGM8IGjnPIvuQ6tufm0lBbQUhQAPGxMeTk5mAzDeLjYnEWrCFs5R/wLc2lx79vZVrSEB5kB3Pz3mXhvk9wuQxs2HA4HNixUe9q4IhxpNmxTg5IZmiXi0ms7UKMbwydjFhKSks9GdGv6B3se5bisvuRm/0gXQIiWH/03/2ZzIjK6mrPY5UROo/QeYQ+a1jpPKKispLUlBRlBMoIZYQywmrnEYeKijhSV6eMUEYoIyyWEd/uyw85rdtPTbr7buZ/9BGfffIJyUlJx6yvqqpi1NixBAQE8P68efj7n/gKuAULF3LZuHFUlJbi5+d3WrefammkRkp6um4/9V925OXRLSXF22WIiJwy5Vc7UVeO7ys/5V+uMh6MisBhczDnwr/SO7LXj/YSh+sP8+zG5/ho78eAe66FsUmjyavcxYbSjRyuP9xsez+7H7f3vI1fpI7HbrO7F1YfwrHpbRyb3sBWke/Z1ojtjRmbjRmWhBmehBneFTM0oe2NxjhTjhzG+fnDOLbMBeCfMV14OhAMWj5dDXQGMiC6P4PjBnNe7CAiAyKP+9T2Da/j86l7xEfj6Bcw0kf++PUfh/JLRKxK+SUiVqX8ErGmM3L7KdM0mXzPPXwwfz6fLljQYkOjsrKSUWPH4uvry7vvvPODDQ2ADRs3Eh4ejp+feyLVgQMGsPCTT5pts3jJEgace+5xn8PPz8/zeDm+hPh4b5cgInJalF/thH8YjaNfYMwbo/mquoYFwUHcv+pB3hj2Kh18O/xPT22aJvP3fsSsjX+ioqESGzbGpVzOb7JuJdgn2LPNvup8NpRuZEPJBhqMRq7PmEhySDIAtsLNOFY9jz3nQ/ctkwDTLwRX5jiMXldjRnX/3/a/vQsIp+mSWRgZo3F+eh8TC/cy0m6nMnEgTak/xZV4HqbTHxMDsJEYnHDiCdqPlGHP/RjHtvex5a8EoOm8e89qQwOUXyJiXcovEbEq5ZdI23ZKIzXunDSJt+fOZe5bb5GWluZZHhoSQkBAAJWVlVw6Zgy1tbW8/eabBAUFebaJiozE4XDw0ccfU1hUxID+/fH392fxkiVMnT6dSXfeyYP33w/A7j176Hfuudxy001MvOYali5bxt333su/3n2X4cOGnVStmii8Zd+sX0+/7GxvlyEicsqUX+2Lff2r1H02lfHxcRzwcdIvqi8P9PsdnYM7n/JzFdQUsGj/Yhbu+4TcCvfw8G6hqUzvO5WsiKwffgLTxLZ/Jc6v/4x99+eexUZ8f1y9Jri/IPcJPOW65AfUV+Fc9hiODa96Fpm+wRjpl+LKHI/ZeQB8O3Lm+xpqsed9in3b+9h3L8VmNHpWuXpNoGnE4/Df86GcYcovEbEq5ZeIWJXyS8SazshIjTkvvgjAiJ/9rPny2bO5dsIE1q1fz6rVqwHI7NX8NhHbt2whqUsXfHx8+NucOdw3dSqmaZLStSuPz5zJDd+bTDw5KYn3583jvqlT+fNf/kJ8fDx/ff75k25oiIiIiLUZvScQeGA1T+78gF91iuGb4rWM//Qqrkr9Bdd3v45gn6ATPr7kSAmf7V/Mp/mfsbFsk2e5v8Ofm3v8mqu6/QKn/QdOg0wD+85PcXz9PPaCb9yLbHb3pOb9b8OMOYmGiJw+vw40jXicpv634tgyF8fWedgq8nFsegvHprcwQ+IxA6OgsRZbYy0c/bE11TV7GiM6E6P7ZbgyRkPIqTfFREREREREpHU5rTk1rEAjNVpWVFJCdOTx7zctItJaKb/aoYZafF4fya6KXTwel8hKh/uK+wi/jtyadQujkkbisDkAqGqoYkPpJtaVrGNd8Xo2lW3GPDoPgw0bfSKzGZEwnKGdLybcL7zl13M1YCvchH3/19j2r8R+YA22unIATIcfRs8raep/C4R1OeO7Li0wDWz7V+HYMhd7znxsDdXH3zS0C64el2FkjMWMTDvudmeL8ktErEr5JSJWpfwSsaYzMlJDrM9wubxdgojIaVF+tUO+gTSNeYGU1y5lzr48Po9J5Y+REeyrLeCxb/6PuXnz6B3Ri/WlG9lRvsPTxPhWr449GZ4wjGGdhxAVENXya5gG9s1v49j6HraD3xxzlb/pF4IreyKufjdC0HGeQ84Omx0zYSBNCQNh6KPY81eC6cL0CXTf/ssZ4P7dNwgCOp71W0ydiPJLRKxK+SUiVqX8Emnb1NRoZw4UFBAbE+PtMkRETpnyq30yO6bSeOV7+My7miGFOxl8pI7XBkzghb0fkFOeS055rmfbhODOZEdm0zcym/7R5xAbGHvC57YVbcW5aAr2g99893oB4Rjx52J2HoDReQBmdBY4fM7Y/slp8gnE6DrE21WcNOWXiFiV8ktErEr5JdK2qakhIiIirZoZ3YOGX/4bn3m/xPfwLq5bMYeRo//K65WbqW2qJTuiN30is4kMOMnh5Q01OP7zRxxrXsBmujB9gnANvBMjdQRmRLeWJ58WERERERERkVZBc2q0Mw2Njfj66IpTEbEe5ZdQU4LPuxOwF27E9AmkcexLmEkXntJT2HcsxLn4fmxVBwFwpY2kacgj0CHuTFQsAii/RMS6lF8iYlXKLxFrOtnv9HUpYjuTt3u3t0sQETktyi8hKJLGK+dhJA7G1liLz7vX4vj6OWz5K6G2tOXH1JRg37EAx9JH8XltJD7/uh5b1UHM0AQaL3+FpjEvqKEhZ5zyS0SsSvklIlal/BJp23T7qXamtrbW2yWIiJwW5ZcA4BtM4xWv4vz4Thw583Eun+lZZQZGYEakYXbsBk1HsB1Yg728+YcZ0+7E1f9WXIPuck8uLXIWKL9ExKqUXyJiVcovkbZNTY12JigoyNsliIicFuWXeDj9aLr0L5id+mHb+wX20lxsFfnYakux1X4F+V8129yITMfs1B8j/hyMxPMgJN5LhUt7pfwSEatSfomIVSm/RNo2zanRzjQ0NODr6+vtMkRETpnyS06ooRZb2U5spTuwleaC3YER3x8zrg/4h3m7OmnnlF8iYlXKLxGxKuWXiDVpTg1p0aatW71dgojIaVF+yQn5BmLG9sLIvALXBdNwDb4PM/liNTSkVVB+iYhVKb9ExKqUXyJtm5oaIiIiIiIiIiIiIiJiCWpqtDPxnTp5uwQRkdOi/BIRq1J+iYhVKb9ExKqUXyJtm5oa7YzdZvN2CSIip0X5JSJWpfwSEatSfomIVSm/RNo2NTXamfwDB7xdgojIaVF+iYhVKb9ExKqUXyJiVcovkbZNTQ0REREREREREREREbEENTXamczu3b1dgojIaVF+iYhVKb9ExKqUXyJiVcovkbZNTY12Zl9+vrdLEBE5LcovEbEq5ZeIWJXyS0SsSvkl0rapqdHOVFVXe7sEEZHTovwSEatSfomIVSm/RMSqlF8ibZuaGu1MgL+/t0sQETktyi8RsSrll4hYlfJLRKxK+SXStqmp0c6kpaZ6uwQRkdOi/BIRq1J+iYhVKb9ExKqUXyJtm5oa7cyGzZu9XYKIyGlRfomIVSm/RMSqlF8iYlXKL5G2zentAs4U0zQBqKqq8nIlrUtNTQ2VlZXeLkNE5JQpv0TEqpRfImJVyi8RsSrll4g1fftd/rff7R9Pm21qVB+dECglPd3LlYiIiIiIiIiIiIiIyMmorq4mNDT0uOttddXVJ257WJRhGBQUFBAcHIzNZvN2Oa1CVVUVKenp5OXk0KFDB2+XIyJy0pRfImJVyi8RsSrll4hYlfJLxLpM06S6upq4uDjs9uPPnNFmR2rY7Xbi4+O9XUar1KFDB0JCQrxdhojIKVN+iYhVKb9ExKqUXyJiVcovEWs60QiNb2micBERERERERERERERsQQ1NURERERERERERERExBLU1GhH/Pz8mD5tGn5+ft4uRUTklCi/RMSqlF8iYlXKLxGxKuWXSNvXZicKFxERERERERERERGRtkUjNURERERERERERERExBLU1BAREREREREREREREUtQU0NERERERERERERERCxBTQ0REREREREREREREbEENTXakdl/+xtpPXoQGhHB+RddxOo1a7xdkoiIx6MzZuAfHNzsp1efPp71dXV13DV5Mp0SE4mIieHKX/6SwsJCL1YsIu3ZFytWcPn48SSnpuIfHMwH8+c3W2+aJr9/9FGSUlIIi4zkZ5deys6dO5ttU1ZWxsTrrycqLo6Y+Hhuvu02qqurz+ZuiEg79EP5dePNNx9zTjZq7Nhm2yi/RORse+KppzjvgguIjI0lISmJ8VdeSW5ubrNtTuYz4778fMZecQXhUVEkJCUxbfp0mpqazuauiMiPQE2NdmLuvHncN20a06dNY+WKFfTMymLU2LEUFRV5uzQREY8e3buzJy/P87Nk0SLPununTOGjBQt4/ZVXWLRwIQWHDvGLq6/2YrUi0p7V1tbSMyuLZ59+usX1f3zmGf4yezbPzZrFF0uXEhQUxKVjx1JXV+fZ5lc33MC2bdv46IMPeG/uXFZ8+SW33XHH2doFEWmnfii/AEYMH97snOyVl19utl75JSJn2xcrVnDzTTexfMkSPpo/n8bGRkaOGUNNTY1nmx/6zOhyubjsiitoaGhg6eLFvDhnDq++9hq/f+wxb+ySiPwPbHXV1aa3i5Az7/yLLqJf376eE1fDMEhNT+fWW27h3nvu8XJ1IiLukRrzP/yQVV99dcy6iooKOicl8c+//53LL7sMgJycHHr368eyJUsYcO65Z7tcEREP/+Bg3nnzTUaPGgW4R2kkp6Zy1513MvmuuwB3jiV27coLs2fz8/Hj2b59O9nnnMOXy5fTr29fAD5dtIgxl19OXm4uneLivLY/ItJ+/Hd+gXukRkVFBXPfeqvFxyi/RKQ1KC4uJiE5mUULF3L+4MEn9Znxk08/5bJx49i9YwcxMTEAvPDii0x/8EH279mDr6+vN3dJRE6BRmq0Aw0NDaxdt44hF1/sWWa327n44ov5etUqL1YmItLczrw8klNTycjKYuL117MvPx+AtevW0djY2CzH0tPTSUhIUI6JSKuze88eDhUWNsus0NBQ+p9zjiezVq5aRVhYmOcLQYAhF1+M3W5n9erVZ71mEZHvW/7FFyQkJdGzTx/uuOsuSktLPeuUXyLSGlRWVgLQMTwcOLnPjCu//pqszExPQwNg2LBhVFZWsnXbtrNYvYj8r5zeLkDOvJLSUlwuF9HR0c2Wx0RHH3P/QRERbzm3f39emD2btLQ0Dh06xIyZMxk6YgRrV62isKgIX19fwsLCmj0mJjpa82qISKvzbS61dO717brCwkKioqKarXc6nXQMD1euiYhXjRg2jLGjR5PUpQu7du/mwYcfZszll7NsyRIcDofyS0S8zjAMfjtlCoMGDSIzMxPgpD4zFhYWtnh+9u06EbEONTVERKRV+OmIEZ7fe2Zl0f+cc0jr0YN5771HQECAFysTERERaT9+Pn685/esrCyysrLo0bMny5Yvb3YFtIiIt9w1eTJbtm5tNgejiLQvuv1UOxAZEYHD4ThmUvDCoqJmQ+5ERFqTsLAwuqWmkrdrFzHR0TQ0NFBeXt5sG+WYiLRG3+bSic69YmJiKC4ubra+qamJssOHlWsi0qp0TU4mMiKCvF27AOWXiHjXpLvv5uOFC/nk44/pHB/vWX4ynxljYmJaPD/7dp2IWIeaGu2Ar68vffv04fOlSz3LDMNg6dKlmlxXRFqt6upqdu3eTVxMDH379MHHx6dZjuXm5pKfn68cE5FWJzkpidiYmGaZVVlZyeo1azyZNfDccykvL2ftunWebT5ftgzDMOjfv//ZLllE5Lj2HzhAaVkZcbGxgPJLRLzDNE0m3X03H8yfzycffURyUlKz9SfzmXHggAFs3rKlWWNj8ZIlhISE0D0j42zshoj8SHT7qXbizttv58abb6Zv377079eP555/npraWq6dMMHbpYmIADD1d7/jkp/9jMTERAoKCnh0xgwcdjs/Hz+e0NBQfnXttdw3bRrh4eGEhIRw929/y8ABA9TUEBGvqK6u9ly1DLBn7142bNxIeHg4iQkJ3P6b3/CHJ54gNSWFpC5d+P1jjxEXF8foUaMAyMjIYMTw4dx2++08N2sWjY2NTL7nHsaPG0enuDhv7ZaItAMnyq+O4eHMmDmTsWPGEBMTw65du5j+wAOkpKQwfNgwQPklIt5x1+TJvD13LnPfeovgDh04dHQOjNCQEAICAk7qM+OwoUPpnpHB9b/+Nf/32GMUFhby+0ce4eabbsLPz8+buycip8hWV11tersIOTv+Ons2T8+aRWFhIb179eKPTz7JubqSRkRaiWsmTmTFl19SWlZGVGQkPxk0iIcfeoiUrl0BqKurY8q0abwzbx719fUMHzqUWc8+S6yGCYuIFyxbvpyfXnLJMcsnXH01L/7tb5imySOPPcbfX36Z8ooKfjJoEH965hm6devm2basrIxJ99zDxwsWYLfbGTtmDE8/+STBwcFnc1dEpJ05UX499+yzjL/ySjZs2EB5RQVxcXEMGzKEhx54oNmtWZRfInK2+R8nX+bMnu25YPdkPjPu3bePOydNYvkXXxAUGMiEq6/msUcewenUdd8iVqKmhoiIiIiIiIiIiIiIWILm1BAREREREREREREREUtQU0NERERERERERERERCxBTQ0REREREREREREREbEENTVERERERERERERERMQS1NQQERERERERERERERFLUFNDREREREREREREREQsQU0NERERERERERERERGxBDU1RERERERERERERETEEtTUEBERERERERERERERS1BTQ0RERERERERERERELEFNDRERERERERERERERsQQ1NURERERERERERERExBL+H1l+wZGmzLpfAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"plt.figure(figsize=(16, 4), facecolor=\"#f8f4f4\")\n",
"plt.plot(merged_dssa['Actual DSSA'], label='Actual')\n",
"plt.plot(merged_dssa['Predicted DSSA'], label='LSTM Predicted')\n",
"plt.plot(merged_dssa['Predicted DSSA GRU'], label='GRU Predicted')\n",
"plt.title(\"Prediction for DSSA.JK\")\n",
"plt.legend()\n",
"plt.grid(True, linestyle=\"--\", linewidth=0.5)\n",
"plt.gca().set_facecolor(\"#f8f4f4\")\n",
"plt.tight_layout()\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 306
},
"id": "RCp9mMCfwDnO",
"outputId": "4a3db2a3-e2e8-47e9-eebb-d99ac6f91a68"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1600x400 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAAGGCAYAAAAzegNcAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Wd8VFW3wOH/lPTeew9JgITQwUZvYqOJDRHBil0URVFRQcV2LWDF+tpABBULIF1F6YTQEgikAOm9zmRmzv0wYSAmgQQCYcJ67s0Pc2bPOftshgXvWdlrqWoqKhSEEEIIIYQQQgghhBBCCCEucOq2noAQQgghhBBCCCGEEEIIIURzSFJDCCGEEEIIIYQQQgghhBBWQZIaQgghhBBCCCGEEEIIIYSwCpLUEEIIIYQQQgghhBBCCCGEVZCkhhBCCCGEEEIIIYQQQgghrIIkNYQQQgghhBBCCCGEEEIIYRUkqSGEEEIIIYQQQgghhBBCCKsgSQ0hhBBCCCGEEEIIIYQQQlgFSWoIIYQQQgghhBBCCCGEEMIqSFJDCCGEEEKIdi6mUyfuuPtuy/frN2zA3tmZ9Rs2tNo17J2deXHOnFY7X0us/OMPel9yCW5eXtg7O1NSUtIm8xBCCCGEEEKce5LUEEIIIYQQ4hz68quvsHd2tny5eXkR37UrDz/6KLm5uW09vRZZvmJFmyUumlJYWMgtEyfi4ODAW2++yacLFuDk5HTOrtfY72dEdDRXX3cd8997j/Ly8kbf9/fGjVw7ejSRHTrg5uVFdFwcY66/nu8WLao3rqKighdmz6Z7r154+voSGBpK70suYdrjj3MsO7vRcy9fsQJ7Z2cioqMxmUzNvpeYTp0YPW5cvWP2zs48/OijDcbOfe017J2duevee1t0DSGEEEIIIVqbtq0nIIQQQgghxMXg2ZkzCQ8Pp6amho3//MNHCxawfOVKtm/ejKOj43mdyxWXX05JQQG2trYtet/yFSv44KOPeObppxu8VlJQgFZ7/v/nxbbt2ykvL+fZZ55h8MCB5+26x38/a2tryc3NZcOff/LYE0/w9rx5/LBoEQnx8ZaxPyxZwoTbbiOxSxfumzoVd3d30jMy+Ovvv/n0s8+4cfx4AGpraxkyfDgpqalMuPlm7r3nHiorK9m7bx8LFy3i2muuITAgoMFcvl24kLCwMDIyMli7fn2rr8Nrb7zBc88/z4RbbuGD+fNRq+Vn44QQQgghRNuRpIYQQgghhBDnwfBhw+jRvTsAkydNwsvTk7fffZdlv/zCDXUPtf+rsrLynOw6UKvV2Nvbt+o5W/t8zZWXnw+Au5tbq52zOet+8u8nwPTHHmPtunWMuf56xo4fT9K2bTg4OAAw+6WX6BgXx4a1axskkvLy8iz//fOyZexMSuLzTz+1JDqOq6mpQa/XNzrXX379lRdnzeLLr77iu4ULWzWp8eZbb/HMc89xy80389H770tCQwghhBBCtDn5F6kQQgghhBBtYED//gCkZ2QAcMfdd+Pl50faoUNcN2YM3v7+TJoyBQCTycS78+fTrWdP3Ly8CI2I4L4HHqC4uLjeORVF4eW5c4mKicHDx4dhV17J3r17G1y7qZ4am7ds4boxY/APDsbT15eeffowb/58y/w++OgjgHrll45rrKfGzqQkrh09Gp+AALz8/Bhx1VVs2ry53pjj5Zw2/vMP0598kuCwMDx9fRl/443k1yUsmjJ0xAjuuOsuAC7r1w97Z+d6vUN+WLKESy6/HHdvb4JCQ5k0ZQpHjx2rd45TrXtLDRwwgBlPPEFmZibffPed5fihw4fp0aNHoztjfH19640DuKRv3wbj7O3tcXV1bXD8p2XLqK6uZsyYMVw/bhw//fwzNTU1ZzT//3r73Xd5auZMbrrxRj7+4ANJaAghhBBCiAuC/KtUCCGEEEKINnDo0CEAPD09LccMBgPXjBqFj48PL8+Zw6jrrgPgvgcfZMbTT3NJ3768/uqrTLz1Vr5btIhrRo2itrbW8v7nX3yR5198kYSEBF6ePZuIiAiuvu46qiorTzufVWvWMGT4cPbt3899997L3Jdeon+/fvy2fDkAd0yezOBBgwD4dMECy1dT9u7dy+Bhw0hOTubRhx9mxhNPkJ6RwbArr2Tzli0Nxj/62GPsSk7m6RkzuOuOO/j19995ZNq0U875ienTmXL77YC5HNSnCxZwx+TJgDlZcsvEiWg0Gl58/nluv/12fvr5ZwYNHdqgkXhT634mbr7pJgBWr15tORYaGsrades4cvToKd8bGhICwNfffIOiKM263ncLF9K/Xz/8/fy4ftw4ysvL+fW3385w9ifMmz+fJ2bM4Ibx41nw4YeS0BBCCCGEEBcMKT8lhBBCCCHEeVBaWkpBQQE1Oh3//PMPL73yCg4ODoy88krLGJ1Ox5jRo5n9/POWY39v3Mhnn3/eoCRR/379uGbUKH5YupQbx48nPz+fN996iytHjGDJ99+jUqkAeHbWLF59/fVTzs1oNHL/gw/i7+/P5o0bcXd3t7x2/OF63z596BAdzeo1a7j5xhtPe7+zXniB2tpaVv/xB5EREQDccvPNdOnWjadmzmTVihX1xnt6evLrzz9b5m0ymZj//vuUlpbi1kRpqSGDBnHs2DE++eyzeuWgamtrmfnMM3Tu1IlVK1ZYSmNddskljB43jnfmzePZmTMt52ls3c9UcFAQbm5ull0XANMeeYR7pk6lU0ICl/Tty6WXXMKQwYO5pG/fesmCa6+5hpgOHXhh9mw+//JL+vfrx2WXXsrIESPq7eg4Li8vjzVr1/LOW28B5qRInz59+G7RIsaOGXPG9/Db8uVkZmYy/vrr+fTjj9FoNGd8LiGEEEIIIVqb/LiNEEIIIYQQ58HIa64hODyc6NhYbp00CSdnZxZ9+y1BgYH1xt11xx31vl+ydClubm4MHjiQgoICy1e3rl1xPqmE1Jq1a9Hr9Uy95x5LYgDggfvuO+3cdiYlkZ6ezgP33VcvoQHUO1dzGY1GVq1Zw7VXX21JaAAE+Ptzw/XXs/GffygrK6v3nim3317vWpddeilGo5HMrKwWX3/b9u3k5edz95131uv1ceWIEcTGxLD8PwkVaLjuZ8PZyYnyigrL95MmTmTZjz/S74or2PjPP7w8dy6Dhw2jc2Ii//z7r2Wcg4MDf65bx6MPPwzA/776inumTiU8OppHpk1Dp9PVu873ixejVqsZfdLOkhvGjWPFypUNSpO1xPE+H+FhYZLQEEIIIYQQFxzZqSGEEEIIIcR58PabbxLdoQNajQY/X19iYmIalPTRarUEBwXVO3YwLY3S0lJCTkoOnOx434njD/+joqLqve7j44OHh8cp53a8FFanTp2af0OnkF9QQFVVFR06dGjwWlxsLCaTiSNHjtS7Xkhd6aXjjidXzuThfGZmJkCj14+NiWHjP//UO9bYup+NispKfHx86h0bOmQIQ4cMoaqqiu07drD4hx/4+JNPGHP99SRt22bZieHm5sZLs2fz0uzZZGRmsnbdOt56+23e//BDXF1def655yzn/HbhQnr26EFRURFFRUUAJCYmotfr+WHpUksprpaacPPNZOfk8Orrr+Pt7c2D999/hishhBBCCCFE65OkhhBCCCGEEOdBz549LeWRmmJnZ9cg0WEymfD18eGzTz9t9D0+3t6tNse21NSOgOb2ljgbja37mTpy9CilpaVERUY2+rqjoyOXX3YZl192GV5eXsx5+WVW/PEHt95yS4OxYaGhTJo4keuuuYaOCQl8t2iRJalx8OBBtm7bBkDnxMQG7/1u4cIzTmpotVq+/vJLrhk1iidmzMDNzY3bbr31jM4lhBBCCCFEa5OkhhBCCCGEEBewyIgI1qxdy6V9++Lg4NDkuONNptPS0uqVfMrPzz/tbofIugfwe/fuZfDAgU2Oa24pKh9vbxwdHTlw4ECD11JSU1Gr1QQHBzfrXGciNDQUgAMHDjBwwIB6r6UeOGB5/Vz45ttvARgyZMhpxx5PcuXk5JxynIeHB5EREezZu9dy7NuFC7GxsWm058XGf/5h/vvvk5mVZflctJS9vT0/LFrE8JEjmXr//bi7uXHdtdee0bmEEEIIIYRoTdJTQwghhBBCiAvY2DFjMBqNvDR3boPXDAYDJSUlAAwaOBAbGxve++CDersb3p0//7TX6Na1K+Hh4bw7f77lfMedfC4nJyeABmP+S6PRMGTQIJb9+ivpGRmW47m5uSz8/nsuveQSXF1dTzuvM9Wje3d8fXz4+JNP6vWhWLFyJftTUhgxfPg5ue7adet4ee5cwsPDuemGGyzH16xd2+j44709YurKZO1KTqagoKDBuIzMTPbt328ZB/DdokVcdumlXD9uHGNGj6739UhdT45F339vGZ+SktLi/iSurq78vHQpUZGRTLz99ibvQwghhBBCiPNJdmoIIYQQQghxAet3xRXcMXkyr73+Ort27WLI4MHYaLUcTEtjydKlvP7qq4wZPRofHx8efughXnv9dUaPG8eIYcPYuWsXK1euxNvL65TXUKvVvPvWW4y5/np6X3opEydMwN/fn9TUVPbu28cvP/0EmJMfAI8+/jhDhwxBo1Yz/vrrGz3nrGefZfXatQweOpS77rwTrVbLgk8/RafT8dLs2a26Rv9lY2PD7Bdf5K577mHoiBGMHzeO3Px85r/3HmFhYa3SI2LFypWkpKZiMBjIy8tj3fr1rF6zhtDQUH5YuLBeg/Lrb7yR8LAwRo4cSWREBFWVlaxZt45ff/uNnj16cNXIkQCsXrOGF+fM4aqRI+nTqxdOzs4cPnyYL//3P3Q6HTOfegqAzVu2kJaWxr133dXo3IICA+nWtSvfLVzIY48+CkBijx5ccfnl/LF8eYvu08fHh1+XLWPgkCGMv+kmfv/lF3r17HkmSyaEEEIIIUSrkKSGEEIIIYQQF7h577xDt27d+OTTT3l21iy0Wi1hoaHcdOONXHLJJZZxzz/7LPZ2diz45BPWb9hAr549+eWnnxg1btxprzF0yBBW/PYbc15+mbfffReTyURkRASTJ02yjBl13XVMvecevl+8mG+/+w5FUZpManTq1InVK1fyzHPP8dobb2AymejVsyefLVhA7169znpNTmfihAk4Ojjw+ptv8vSzz+Lk5MS111zDnBdftDQhPxsv1CVmbG1t8fTwoHPnzrw+dy4Tb70VFxeXemPfnzePZb/+yg9LlpCdnY2iKESEh/PE44/z2KOPotWa/2fZqOuuo7y8nNVr1rB+/XqKiovxcHenZ8+ePPTAAwzo3x8w98sAGFmXDGnMyCuvZPZLL5G8ezcJ8fGNjlEUpcleJicLCQ7m159+YvCwYVw3Zgyrli9vtabyQgghhBBCtJSqpqLi3HfeE0IIIYQQQghxQQkICWHE8OF8tmBBW09FCCGEEEKIZpOeGkIIIYQQQghxkUk7dIji4mI6xsW19VSEEEIIIYRoESk/JYQQQgghhBAXiUOHD7NixQo+WrAAW1tbrm9GaTIhhBBCCCEuJLJTQwghhBBCCCEuEn/9/TfTZ8zA1taWxQsXEhEe3tZTEkIIIYQQokWkp4YQQgghhBBCCCGEEEIIIayC7NQQQgghhBBCCCGEEEIIIYRVkKSGEEIIIYQQQgghhBBCCCGswkXdKNxkMpGdnY2zszMqlaqtpyOEEEIIIYQQQgghhBBCXJQURaGiooKAgADU6qb3Y1zUSY3s7GyiYmPbehpCCCGEEEIIIYQQQgghhADSUlIICgpq8vWLOqnh7OwMmBfJxcWljWdz4SgrL8dV1kMIYUUkbgkhrI3ELSGEtZG4JYSwRhK7hLAu5eXlRMXGWp7bN+WiTmocLznl4uKCq6trG8/mwnHg0CGCT5EJE0KIC43ELSGEtZG4JYSwNhK3hBDWSGKXENbpdK0ipFG4EEIIIYQQQgghhBBCCCGsgiQ1RAPRERFtPQUhhGgRiVtCCGsjcUsIYW0kbgkhrJHELiHaJ0lqiAZKysraegpCCNEiEreEENZG4pYQwtpI3BJCWCOJXUK0Txd1T43mMCkKtbW1oChtPZXzprCoCH9f37aexsVDpcLGxgb1aWrFCSGaVlBYSFhISFtPQwghmk3ilhDC2kjcEkJYI4ldQrRPktQ4hdraWrKOHUO5iBIaAA6OjhzJzm7raVxUVCoVIYGB2NjYtPVUhLBKkhQUQlgbiVtCCGsjcUsIYY0kdgnRPqlqKiourif2JykrK8M3MJC8Y8dwdXWt95qiKBzLycGoKAT4+6NWS6UucW6YTCayc3LQqFQE+vujkr9whRBCCCGEEEIIIYQQF5lTPa8/2Vnt1HjtjTd45rnnuH/qVF5/9VUAho4YwZ9//VVv3B2TJzPvnXcs32dmZfHgww+zfsMGnJ2cmHDLLbz4/PNotSems37DBp6YMYO9+/YRHBzMk9OnM3HChHrn/eDDD3nz7bfJzc2lS0ICb77+Or169jybW7IwGo3U6HQEBgbi6OjYKue0FtXV1Tg4OLT1NC4qPt7eHDt2DKPRWO/PgRCieZJ27yYxPr6tpyGEEM0mcUsIYW0kbgkhrJHELiHapzPefrB12zYWfPopCY0EhsmTJpGelmb5emn2bMtrRqOR0WPHotfrWbd6NQs++oj/ffUVz5805nB6OqPHjaN/v35s3riRB6ZO5d777uOPVassY75fvJjpM2bw9IwZ/PvXXyTEx3PNqFHk5eWd6S3VYzSZAC7KckAX7dadNnT8c3b8cyeEaBmDwdDWUxBCiBaRuCWEsDYSt4QQ1khilxDt0xklNSoqKpg0ZQrvzZuHu7t7g9cdHR3x9/OzfJ28VWTV6tXs27+fzxYsILFLF4YPG8ZzzzzDhx99hF6vB2DBJ58QHhbG3JdfJi4ujnvvuYcxo0bxzrx5lvO8M28ekydN4rZbb6Vjx47Me+cdHB0c+OJ//zuTW2qoro/GxVgKSKPRtPUULjqWz9lF1r9FiNbi2cjfRUIIcSGTuCWEsDYSt4QQ1khilxDt0xklNR569FGuHD6cwQMHNvr6dwsXEhQaSvdevZj53HNUVVVZXvt30ybiO3fGz8/PcmzIkCGUlZWxd98+y5hB/zn3kCFD2LR5MwB6vZ7tO3bUG6NWqxk4cKBlTGN0Oh1lZWWWr/Ly8pbf/EXARsofCSGsjI+3d1tPQQghWkTilhDC2kjcEkJYI4ldQrRPLX56vej779m5cyd/b9jQ6Os3jB9PWGgoAf7+JO/Zw8xnnuFAaioLv/0WgNzcXHx9feu9x6/u+9zcXPOveXmNjikrK6O6uprikhKMRmOjY1JTU5uc+6uvv86cl19ucHxncjJOTk4kxseTevAg1TU1ODs5obGxobqmBpOiYGtjgwLU1tYC4GBvj06vx2QyoVarsbO1pbqmBjCXElIB+rqx9vb21Or1GE0m1CoVdvb2VFdXm8dqtajUassuFXs7O2prazGaTKhUKhzs7amqG6vVatGo1ehOHmswYDQaUQEODg4nxmo0aDQay1g7W1uMRiMGoxEARwcHqqurUTDvzNBqteh0OsDcJN3GxsayRc/RwYHqmhoURUGj0WCj1VJTN9bW1hbFZKK2bqyDgwM1x8eq1djY2lJTty4uLi4sWriQK0eOPLGGOh0mRWl0DWlqvVUq7OzsTozValGpVI2ut0qlwv506318DU+z3nZ2dhhaab1PXkM7W1tqDQb0tbXs2b+fbl26sGffPnR6Pe6urgT4+7Ov7nMdHhqKTqcju+7PSteEBFIOHKC6pgZXFxdCgoLYs38/ACHBwZiMRo5mZwOQ0LkzaYcPU1VVhZOTE5FhYSTv3QtAUGAgapWKrKNHAejcsSOZWVmUV1TgYG9PTHQ0Sbt3AxDg74+tjQ0ZWVkAdIyN5Vh2NqVlZdjZ2dEpNpYdu3YB5j+Tjg4OHM7IACC2Qwfy8vMpLinBxsaGLp07sz0pCUVR8PH2xtXFhbTDhwHoEBVFUXExhUVFaDQauiYksDM5GaPRiJenJ54eHhxISwMgKiKCsvJy8gsKUKlUdE9MZNeePdTW1uLh7o6vjw8pBw4AEBEWRlV1Nbl1peq6denC3pQUdDodbq6uBAYEsC8lBYCwkBD0tbVk5+QA1IsRLs7OhIaEsKcuGRsSFIRJUTh67Jh5vTt14lBGBpWVlTg6OhIVEUHynj3m9Q4IQK3RkHXkiHm94+LIOnqUsvJyHOztie3QgZ3Jyeb19vPDzs6O9MxM83rHxJCdk0NJWRl2trZ07tiR7UlJ5vX28cHJyYlD6enm9Y6OJr+ggKKSErRaLYnx8exISsKkKHh7eeHu6srBuvWOjoykpKSEgqIi1Go13bp0ISk5GYPRiKeHB95eXqQePAhAZHg4FRUV5BUUANCja1eS9+xBX1uLu5sb/n5+7D/pM1tTU0NO3Xp3TUhgf2oqNTodri4uBAcFsbfuMxsaHIzBYOBY3Xp3iY/nYFoaVdXVODs5ER4ayu669Q4ODATgSN16m0wmXF1cqKisxNHBgeioKHbVfWYD/f3RarVk1q13p7g4jtStt72dHXExMZb19vf1xd7e3rLecTEx5OTmUlJaiq2NDQmdO7Nt504AfL29cXZ2tqx3THQ0BYWFFBUXo9VoSExIYMeuXZhMJrw9PXF3d+fgoUPm9Y6IoKSsjILCQtQqFd0SE0navRuDwYCnuzs+3t6knLTelZWV5ObnA9A9MVFiBBIjJEa0LEbEd+xIembmBRUjDEYjarVaYoTECPN6S4yQGGEF/44oLimx7OqXGCExQmKExAhr+XfEzuRk3FxdJUZIjJAYYSUxQmlmFRtVTUVFs+vdZB05wmVXXMGvy5ZZemkMHTGCxC5dLI3C/2vtunVcefXV7Nm1i6jISKbefz+ZWVn88tNPljFVVVV4+vry05IlDB82jPiuXZk4YQLTH3vMMmb5ihWMGjuW4roAFNmhA+tWr6Zvnz6WMU/NnMmff/3Fn+vWNToXnU5neXAPUF5eTlRsbKPd1HU6HUeyswkPD8fe3r65S3TB+Oeff+jXvz/Dhw/nl2XLmv2+yKgo7r33Xh4/ae1bi0ar5YcffmDUdde1+rmtXU1NDenp6QQHBGBnZ9fW0xHC6mzbuZMeXbu29TSEEKLZJG4JIayNxC0hhDVqj7Fr7h8H+ftQMZ/fmoino21bT0eIVlVWVoZvYGCjz+tP1qLyUzt27CAvP5++l12Gk5sbTm5u/PnXX8x//32c3Nww1v1U+sl69+oFwKG6bJCfn1+DZt7HM5THS1L5+fo2OsbV1RUHBwe8vbzQaDSNjjm5rNV/2dnZ4erqavlycXFpye1blU8/+4z777+fP//8k2N1mcPm0kpPDSGElYkMD2/rKQghRItI3BJCWBuJW0IIa9TeYldxVS1fbDpCSl4lv+/Nb+vpCNFmWpTUGDhgANs2bWLzxo2Wrx7du3PjDTeweePGRhtMJ9Vt+/L39wegb58+7N6zp15CYvWaNbi6utIxLs4yZu1/dlusXrOGPr17A+aSR927das3xmQysW7dOsuYi1lFRQWLFi3inrvvZuTIkXzxxRf1Xl+2bBl9+vbF0ckJXz8/xowdC8CgQYPIyMjgsccfR6PVoqnrrfH888/TvUePeud4++23iYyKsny/ZcsWhg0fjq+fHx6engwcOJDt27ef4zsVQgizysrKtp6CEEK0iMQtIYS1kbglhLBG7S12rUopwFhXc2dNakHbTkaINtSipIaLiwudO3eu9+Xo6IiXpyedO3cm7dAhXnrlFbbv2EF6Rga//PorU+66i8svu8xSrmrI4MF0jItj8p13sis5mT9WreL5F17g7rvuspTduWPKFA6np/PUzJmkpKTw4Ucf8cOSJTx4//2WuTx4//18+vnn/O/rr9m/fz8PPPQQlVVVTJwwoRWX5wRFUajSG9rkq7m1xI5b9P33xMXFERsbyy0338xnn39uOcevv/7K2HHjuHLECLZt3cofK1dadtMsXryY4OBgZs6cydEjRzhaV++tOcrLy5k4cSIb1q9n499/E92hA1dfc400YxdCnBfH6zsKIYS1kLglhLA2EreEENaovcWu5XtP/JD4pvQSKnSGNpyNEG2nxY3CT8XW1pY1a9cy7733qKysJDg4mNHXXceT06dbxmg0GpYsXsyDDz9M/0GDcHJ0ZMItt/DczJmWMRHh4SxdvJjpTz7JvPfeIygoiPfnz2fokCGWMdePG0dBQQEvzJ5Nbm4uiV268PPSpacsP3U2qmuNxD+/6pyc+3R2PzcER9vm/1Z99umn3HLzzQCMGDGCKXfcwfr16xkwYAAvv/wyN9xwA7NmzbKMT0xMBMDT0xONRoOzs7NlZ01zDRo0qN73H37wAZ5eXqxfv56rr766RecSQgghhBBCCCGEEEKcUFxVyz+HiwFwd9BSUm3g70PFDO/o08YzE+L8O+ukxh/Ll1v+OyQ4mFUrVpz2PWGhofy0ZMkpx/Tv149NGzeecsy999zDvffc07yJXiRSUlLYvGULP/zwAwBarZbx48fz6WefMWDAAHYmJTHljjtOeQ5bG5sWXzc3N5dnnn2W9evXk5eXh9FopKqqiqysrDO6DyGEaInudclZIYSwFhK3hBDWRuKWEMIatafYtSolH6MCHf2c6RPuzuebjrA2tUCSGuKi1Ko7NdozBxsNu58bcvqB5+jazfXpp59iMBgIDgmxHFMUBTs7O9595x0cHBxOe45aQ/2ta2q1ukEJrNra2nrfT7r9doqKivi/N98kLCwMOzs7Lrv8cvR6fbPnLoQQZ2rPvn3Ed+rU1tMQQohmk7glhLA2EreEENaoPcWu5XWNwa/s5EPXYFc+33SEdQeLMJoUNGpVG89OiPNLkhrNpFKpWlQCqi0YDAb+99VXvP7aawwdOrTea2PGjuXb776jS0ICa9as4fZJkxo9h62tLYb/JDW8fXzIyclBURRUKnOQ3JmUVG/Mxo0bmTdvHiNHjgQgKyuLggJpWCSEOD90kkAVQlgZiVtCCGsjcUsIYY3aS+w6ufTUiE4+BLrZ42qvpbiqlp1Hy+gR4tbGMxTi/Lqwn9KLFvnl118pLi5m8uTJuLnVD2ZjRo/ms88+Y+4rrzB02DCiIiO54YYbMBgM/P7770yv63sSFhbGxo0bOXr0KHZ2dnh7ezOgf38eyM/ntddeY+zYsaxYsYLly5fj6upqOX+HDh346quv6NmjB2VlZTzxxBPN2hUihBCtwf2keCSEENZA4pYQwtpI3BJCWKP2ErtOLj0V5ukIQL9oT37ZncealAJJaoiLjrqtJyBaz6effsrgwYMbJDQAxowZw9atW/H09GThwoUs++UXuvfowZChQ9m8ZYtl3POzZpGZmUmHmBj86pqFd+zYkXnz5vHe++/TrXt3Nm/ZwrRHH613/o8/+oiSkhJ69urFbZMmcf8DD+Dr63tub1gIIeoE1MUrIYSwFhK3hBDWRuKWEMIatZfYdXLpqeMGx3gDsPZAYZvMSYi2pKqpqFBOP6x9KisrwzcwkLxjx+rtOgDQ6XQcyc4mPDwce3v7Npph26iqrsZRdlmcVzU1NaSnpxMcEICdnV1bT0cIq7Nt5056dO3a1tMQQohmk7glhLA2EreEENaoPcSuoio9l7+5EaMCK+/rbdmpUV5joO8bf2MwKfWOC2HNTvW8/mSyU0MIIYQQQgghhBBCCCEuQKtTCjAq0MnfuV7iwsVeS68wc7WWtamyW0NcXCSpIRqwtbVt6ykIIUSLhIeGtvUUhBCiRSRuCSGsjcQtIYQ1ag+x6/e60lMjOvo0eG1gB3MJqtWS1BAXGUlqiAYUk6mtpyCEEC2i0+naegpCCNEiEreEENZG4pYQorVV6Y3n/BrWHruKqvT8e7gYgBGdGiY1BsV4AbAts4TS6trzOjch2pIkNUQDtQZDW09BCCFaJDs3t62nIIQQLSJxSwhhbSRuCSFa04aDhfR49U+mfJNEdmnNObuOtceupkpPHRfi4UAHH0eMCmw4WNQGMxSibUhSQwghhBBCCCGEEEIIcd5sPFyMSYG/0oq5+sMt/LAzG0VR2npaF5xTlZ46blCMuQTV2gNSgkpcPCSpIRpwcHBo6ykIIUSLdE1IaOspCCFEi0jcEkJYG4lbQojWdLiwCgA3ey0VOiNPLUvhnoXJ5JbrKNGVYFRapzSVNceu05WeOm5gXQmqDQcLqTVKSXlxcZCkhmhAV3Putv0JIcS5kHLgQFtPQQghWkTilhDC2kjcEkK0psOF1QC8NbYTjw2OxEajYt2BIq76/FuGLBvBvOT3WuU61hy7Vu0/demp47oEuuLlZEO5zsjWzNLzOEMh2o4kNUQDJtnuJ4SwMtWSjBVCWBmJW0IIayNxSwjRWvRGE0eKzUmNKB8n7rw0lKV39KRzgDN6290AfJu6hGpD9Vlfy1pjV165jm+3HQNOXXoKQKNW0T/avFtjTWrBOZ9bc+3JLufZX1PYnV3e1lMR7ZAkNUQDGrV8LIQQ1sXVxaWtpyCEEC0icUsIYW0kbgkhWktWcTVGBRxtNfg62wLQwdeJhbd3J9Tf3BfCQDXTVy496z4b5yp21RpNfL31KF9vOUp5jeG049PyK3nh91SeWrafbVmlTd6XwWTiy81HGPHeZvbmVGCvVXNVvO9pzz845nhSo/CC6E2yJCmbGz/bzsLt2dzy+Q5W7Ms/7XsURSGjqIpDBVUUVOjRGVqnBFlrqzWa+G7bMVbtP/09iXNH29YTEBceG1vbtp5Cq1m3bh2DhwyhsKAAd3d3Pv/iCx599FGKCs9/86TIqCgeevBBHnroofN+bSHau5CgoLaeghBCtIjELSGEtZG4JYRoLcdLT0V4OqBSqSzHNWooVzIs32/IXcVHf1/G3ZeHtfga1bVGPvgzAy9HLaFhRuy0mrOfeJ1dx8qYuSyFlLxKAF5fncboRH9u6RVElLeTZZyiKGzLKmXBxqx6Tbx/2JlDJ39nbu0dxFWdfS1zSzpaxqzfUtmbUwFAl0AXnh8ZQ7D76XvfXhrpia1GxZGSGr7acpRbegWhPmltzxe90cQrKw/y9VbzLhMfZ1vyK/Q8uHgPjw+OZMolIfV+z4/LKq7mxeUHWH+wqN5xW40KF3st7g42jEn0Z/IlIW1yX8elF1Yx/ad9JB017z555do4Rif6n/Z9WzJK2HGkrMnXb+4ZiLOdPKZvCfmR/Hbm9smTGT1mTJOvJyUlcd2oUfgHBODo5ERkVBQ33nQTeXl5PP/882i0WmxsbNBotY1+Hb+GRqvl3qlTG5z//gceQKPVcvvkyU3OYd26dfXOGRAYyLjrr+fQoUNnvwCnccP48ezft6/Z4yOjonj77bfP4YyEEK1hz/79bT0FIYRoEYlbQghrI3FLCNFajjcJj/Cq3yfiSMURKg1VqOseV2qdU3hz/R6+2Xq0RedXFIWnft7PB39nMuePwwx+dxOfb8qiuvbsfvK/Sm/klT8OcsOn20nJq8TdQUuUtyNVtSa+3nqMke9vYcrXSaxNLeCP/fnc+NkObvliJ2sPFKIChsR6M66rP3ZaNXtzKpjxcwr93/6X/1tziGd/TeGGT7ezN6cCV3stz4+MYeHk7nQKaN5OE0dbDaO6mB+uz15xkFu/3MmhgqpTvudISTVrUwvILded1bocl1+hY9L/kiwJjQf6hbP2wb5M6GVOir+2+hDP/ppar5m53mDivT/TueqDLaw/WIRWrcLVXsvxtIXeqFBYWUtaQRWvrT7EHd/sIr+idebbEoqisGj7MUZ9vJWko+XYqM0zfHrZftaepuTXZ/9mMeHLnbyx5lCTX83Z7SPqkxTQRSQ/P5+hw4Zx1VVX8ftvv+Hu7k56ejrLli2jsrKSadOmcffdd1NdU4ODvT19+vblzjvu4I477mhwrpCQEBYuXMibb7yBg4M5Y1xTU8O3335LaGhos+azb+9eXFxcOHDgAPfcey/XjRrFzh070GjqZ88VRcFoNKLVnv3H1cHBwTJfIYQQQgghhBBCCHF+NZXU2FeSAkAnz47ojDoOlB7ExjWZF353xMVOyzUJfs06/4d/Z/Lb3nzzA3JbyK/Q8/LKND76O5PJfUO4qWcgTrYte8b096Einv01lSMl5h4dV8f78vSwaDwcbfg3vYQvNx9hbWohfx0q5q9DxZb32WpUjE70Z1KfECK9zff72OAoFu/M5putRzlWquODvzMt40d38ePxIVF4ObWsioqiKERHb6Gragupe0awNROu+2gLU68I545LQ7DRmBNFFToDy/fl89OuHDZnnGgqHubpQM9QN3qHutMzzK3B7hCToqA3mKg1KthqVdhq1PV2XOw8UsoDi/eQV67H2U7Da6M6MijGG4BnRnQgzNOBl1YcZNGObI6U1PD2uE7sya7g+d9TLTt3+oa789yVMUR6O2JSFCp1RspqDJTrDGzLLOXVVWn8faiY6z7ayqvXdeTyKM8WrdGZKqrU8/QvKaxJNe+26RPuzivXxvH2usP8uCuXh3/Yy2cTEuke4lbvfYqi8Oaaw3y00fz72z/as8nfV3ub1ttJdLGQpMZF5O+NGyktLeXjjz6yJAgiIiIYOHCgZYyzszMGgwGtVotGo8HFxQV//4bbqLp168ahQ4dYsnQpt9x8MwBLli4lNDSU8PDwZs3H19cXd3d3AgICmDlzJrfeeisHDx4kOzubwUOG8MuyZTz73HMkJyez/Pff6devH6+++iofL1hATk4OMTExPP3004wbO9Zyzt9++41Hp00jKyuLvn36cOvEifWu2Vj5qWXLljF7zhySk5Nxdnbm8ssvZ8kPPzBo0CAyMjJ4dNo0Hp02DQCjwZw5/euvv3j66afZum0b3t7ejBo1ipfmzMHJybzNMC8vjzvuvJPVq1fj7+/PCy+80Kw1EUKcmZDg4LaeghBCtIjELSGEtZG4JYRoLel1D7HDveo/ON9fbN4R1tEjDn9Hfw4kHyQoaC/pJX144qd9ONtpGFj3oLwpa1ILeGvtYcD8MP2KYC1/HzXw4d+ZHCmp4bXVh/h4YyZXdfYlMciVxCBXwv5TBgvMZZRScivYdaycfw4V80eK+afxA1zteH5kDP07eFnGXhLhwSURHmQVV/PN1qMs3pkDmEsK3dorGG/n+g+yPRxtuPPSUG7vG8za1EK+3nqUKr2RxwdH0SvMvYWrWffwPOltvj34HQBX9wsg+9BI/kwr4q11h/ltbx6T+4bwZ1oRq1IK0BnMOyVUmJMZmcXVZBSZv36om7uno41lHXR1yYz/stWosNOqsdOqKak2YDApRHk7Mn98fIOE1cTewQS72zNtyV42Hi5m+PzNFFXVAuYSVU8OjeKqzr6W3we1ylx2ysXe/Pwyzs+ZPuHuPPLDXlLzK5nyzS7uvDSEhwZEWBI2ra261si6A4XMXn6AgspabNQqHhkUwe19zSWwZl8dS0l1LesOFHHPd8l8fVs3OvianwsaTCZm/XaA73dkA/DowAjuuiy00dJb4sxIUqO5FAVqT71t65yxcYRW+ND7+/lhMBhY+uOPjBs7tsk/SM1tJ3T7pEl88fnnlqTG5599xqTbbmPd+vUtntvx3RN6vd5y7Kmnn+bVuXOJjIzEw8ODV155ha+/+Yb35s+nQ4cObPjzTyZOnIiPtzf9+/cnKyuLcddfz9R77+XOO+9k67ZtPP7446e87q+//srYceN4asYMPv/sM/R6Pb///jsAixcvplv37g12q6SlpTHyqqt48YUXWLBgAfn5+Tz40EM88OCDfPrJJ+a1mTyZ7OxsVq9ahY2NDQ8//DB5eXktXhchRPOYjBdmAzEhhGiKxC0hhLWRuCWEaC1N7dTYX2zeqRHrHktfvz7MS36PQlMKw+I1rNxt5KEf9vLmmE4MjvFq9JnWgbxKpi3dh4I5oXBjj0BycnMZ3z2Q0Yn+/LI7jw/+yiC9qJqvtx6zlElys9eSEORCl0BXKvVGdh0tY092OfqTHuSrgAm9gnh4YESTvQ9CPBx4Ymg0jw+JQgWnfYCtVasZGufD0DifZq5cQybFxKs7XmfxoSWWYyuPLmPR1TeTlOHHnBUHSM2r5MmfT5QQjPJ2ZFQXf65N8MXf1Z7yGgPbs0rZnFHClswSdh8rtyQcTkVvVNAbjZTrzH8/DIvz5uVr45pcn0Ex3nx9WzfuXphMXrketQpu6RnEQwMiLMmLU4n2ceL7Kd15+Y80vtt2jI83ZrElo5Qnh0XRJdAVjfrsnp1W6MzrsCWjlC2ZJSQfK8dgMn8Gor0deWN0J+L8nS3jbTRq3hrbmUn/S2Ln0TKmfJPEd7d3x8vJhmlL9vFHSgFqFTw/Mobx3QPPam6iIUlqNFdtFeq5IW1yadMTWWDrdPqBp9G3b19mPPkkEyZMYOrUqfTq1YtBAwdy66234ud3YgtfbW0tNs0o9XTLLbfw1NNPk5FhbuL098aNfPPNNy1OamRnZ/PmG28QFBREbGwsGzduBGDWrFkMHToUAJ1Ox8uvvMLKFSu45JJLAIiMjOTvv//mo48/pn///nzwwQdERUXx+uuvAxAbG8vu5GRefe21Jq/98ssvc8MNNzBr1izLscTERAA8PT0b3a3yyty53HzzzZaG3x06dOCt//s/Bg4axHvz55OZmcny5cv5959/6NWrFwAff/wxnePjW7QuQojmO5qdjb9f87YiCyHEhUDilhDC2kjcEkK0htLqWssD85N3aiiKwv668lPmnRp+dPPuyvaCHXSNTaNW14O1Bwq5b9FuLo3wYPqQSDr6n+g3UVJdy9RFyVTpjfQOc+epYdHAidhlo1EzOtGfaxP8WJtawKaMEnYdLWdvTjmlNQb+Sivmr7RiTnZysmNIrDedm9nf4nw1sjYqRl7a9go/pS9DhYqne8xg7dF1/J2zkff2fMDcS17i8kgPXlt9iKSjZVwa6cGoLv509neul3BxsdfSv4OXZfdJpd5AemE1NiftxLDVqLHVqrHRqKg1KugM5h0c+rpfbTRqIrwa7nj5r04BLiye3IPvd2QzMMar2Wt6nL2NhudHxnBphAdPL9vPzqNl3PjZDlzttVwS4cEVUR5cFulJoJt9s8+ZVlDJrN8OsDWzBNN/ftLbz8WWa+L9eKB/eKMlohxsNHxwYwK3fLGDtIIqpny9C29nWzZnlGCjUfHm6E4M63jmSSvRNElqXGRmz57NI488wpq1a9m8aRMffvQRL7/yCuvWriUhIaFF5/Lx8WHkyJF88cUXKIrCyJEj8fY+9TbAk4WGhaEoClVVVSQmJvL9okXY2p7YktezRw/Lfx88eJCqqiqGjxhR7xx6vZ5uXbsCsG//fnr37l3v9b51CZCm7ExKYkojPUNOZdeuXezatYtvvvnGckxRFEwmE4cPHyb1wAG0Wi09Tpp/XFwc7u7uLbqOEEIIIYQQQgghRHtyfJeGn4ttvb4WRyuPUV5bjo3ahkjXCABGho1ge8EOVh75gy/H3cpb69L53+YjbDxczOiPt3Ftgh8PD4zA18WWh3/YQ2ZxDUHu9rw9rlOTJYk0ahVD4nwYUrc7wlJm6mg5u7PLcbTV0CXQhS5BroQ3UpbqQmEwGXhh6xx+y/wdNWqe6/UMV4VdSbxnJzbm/MPqo2vYXbibeK94Xr42rkXndrLVnjLZYKcFZ7szn7ufqx339w8/8xMAwzv6EB/gwhtrDvFnWhFlNQZW7Mtnxb58ACK9HBmd6M/E3kFN9qtQFIUlSTm8uPwA1bXmklzB7vb0DnM39xcJcyfY3f60nwEPRxs+ubkLN36+g0OFVRwqrMLJVsN7N8TTN9zjrO5TNE2SGs1l42jeMdFG125NXl5eXD9uHNePG8ecOXPo0bMnb7z5Jp9/9hkADvbNz2bePmkSD9btWHj3nXdaNI/169bh6uqKr68vLi4Ng+Xx/hQAFRUVACz7+WeCgoLqjbOzO/NIeiZNwysqKrjrrrt44P77G7wWGhpK6oEDZzwfIcSZSejcua2nIIQQLSJxSwhhbSRuCSFaw2FLP43/lJ4qMZdH6uAWjY3a3M9hcNAg5u54nbSyNDIrDvHEkA7c3COQt9Ye5pc9efyUnMvve/NICHRlW1YpjjZq3h8fj6fjiR+YPV3sstWoSQh0JSHQtTVvs0XK9eWoVGqcbZpXpcVgMvDM5ln8cWQVGpWGF3vPYliIudJJtFs0V4eNZFnGr7yTPJ8P+793wSZmzlaQuz1vjumEwWRi97Fy826bQ0UkHS3jUGEVb6w5xNdbj/LwgAiu6+JXbwdNhc7Ac7+l8stuc6n4SyLcefGqWEI8Wv6cECDAzZ5Pb+7CxP/tBOCjm7q0eBeKaBlJajSXStUqJaAuNLa2tkRGRlJZWWk5ptPrsW9momDEiBHo9XpUKhXDhw9v0bUjIiKavXuhU6dO2NnZkZmVRf/+/Rsd0zEujmW//FLv2KZ//z3lebskJLBmzRpunzSp0ddtbW0x/qd2bLdu3di3dy/R0dGNvicuNhaDwcC2bdss5adSUlIoKSk55VyEEGcu7fBhOsbEtPU0hBCi2SRuCSGsjcQtIURrSD9NP404jxO7ClxsXbjc/1LWHlvP75kr6ODegRAPB94Y04lJfYN5dVUamzNK2ZZVCsCrozoS6+dc77wXauwqqC5g3bH1rDm6lm35O1ChYmLsBCZ3nIS9pukfNj5cdpi5O15na/42tCotL/edzcCgAfXG3N35TlZk/cH2gh38nbORywMuO8d30zIVtZX8nbORnj7d8bL3Ov0bTkOrVtM12I2uwW7c3z+csppa/thfwLwN6Rwr1fHkz/v5fFMW04dEcVmkJ8nHynh0yV4yi2vQqOChARHccWnoWffkiPJxYtUDfdGoVNhqm9e8/LeM3ymoKWRi7ISzuvbFSJIa7VBZaSk7d+6sd8zLy4ukpCQWLlrEDePHExMTg6Io/PLLL/z+++98UtfgGsBkMjX7WhqNhj27d1v++1xxcXFh2qOPMm3aNEwmE5dfdhmlpaVs3LgRF1dXbps4kbvvvps3/+//mD59OlOmTGHb9u188eWXpzzvM888w9Bhw4iKjOSGG27AYDDw+++/M336dADCwsLY8Oef3HDDDdjZ2eHt7c30xx/n0ssu44EHH2TK5Mk4OTmxd98+Vq1axbvvvENsbCzDhw/n3qlTmT9vHlqtlkcfffSMdoUIIZqnqqqqracghBAtInFLCGFtJG4JIVrDiSbh9Z+R7Cs279SIc4+td3xE6HDWHlvPiqyV3J8wFbXK/LA4IdCVL2/tyroDhXy5+ShD47wbbbh9IcWu/Op8VmatYs3RtewqTEahfgOHT/d/zsqsVTzZ7XH6+vep91q5vpyP9i5gUdpijIoRW7Utc/u+xBWBlze4jr+jPzdEX8//Ur/m3eT3uMS/LxrVuXtm11xGxchPh5fxwZ4PKdIV46BxYGLsBCbE3IyDtvWembna2zC2awBXx/vy5eajfPhXBvtzK5n89S66Bbuy+1g5tSaFQDc73hjdie4hbq12bYcmSl01Zt2xDTy/dTZGxUiES3ijv5eiaZLUaIfWrV9Pj5496x2bPHkyM558EkdHRx6fPp2srCzs7OzoEB3NRx99xK0TTmQE1ermZROPc3U9P1v0XnjhBXx8fJg7dy53HzqEu7s73bp1Y8aTTwLm0k/fL1rEtMceY978+fTu1YvZs2dzxyl6ZgwYMICFCxcyZ84c5r76Kq6urlxxxRWW15+fNYt7p06lQ0wMOp0Oo8FAly5dWLtmDTOfeYb+AwagKApRUVGMv/56y/s+/eQT7rzrLgYOGoSfnx8vvPACWc89d+4WR4iL3Mnl6oQQwhpI3BJCWBuJW0KI1nC8/NTJOzXMTcLNSY2OHvX7P1wecBnONs7kVuexPX8HPX1P9C9VqVQMjPFmYEzT/V0vhNhlUkwsSlvMvOT3qDHWWI7He3ZmUNBABgb1J7XkAK/v/D+OVB7h/r8eYmjwEKYlPoyHvQc/HV7Ge7s/oERfAkC/gCt4JPFBQpxDmrzm7XG38ePhn0krS+O3jN+5Jvzqc32bp7QpdzP/t+ttDpamAeCodaTKUMWHez9m8aEl3NPpTq4Jvxqt+sSjapNiIrXkAP/mbiKpcBdOWkcCnQIJdAog0NH8q7+jf733nMxOq+HOS0MZ29Wf9//M4Jutx9hxpAyAYXHezL46FjcHmybnrCgKSw7/SHpZOiZMmJTjXwoKJgIcA+gXcDnRbtEtLvG1OXcLM/59GqNi5OqwkVwWcGmL3i9AVVNRoZx+WPtUVlaGb2AgeceONXgwr9PpOJKdTXh4OPYt6DHRHiiK0m7r7V2oampqSE9PJzgg4Kx6hAhxsdLr9dja2p5+oBBCXCAkbgkhrI3ELSHE2TKaFLq+sgG9UeGP+/oQ6mn+6fzsymyu+X00WpWWDaPWYKupH2te3DqHn9KXMSriWmb2eKpF12zr2HWk4ggvbJ3D9oIdAHTy6MTIsBEMCOyPv6NfvbGVtZV8sOcjFh78HhMmnLRO+Dv6k1ZmTgREuIQzLfGRBrs4mvJlyle8kzwPPwdffhixqEFZqypDFYU1hQQ7BZ+z54Dp5Rm8vesd/sz+GwBXG1fu7DSFcVFjWHt0HfN3v8/RymMARLpGcHenO6k2VPNv7iY25W2hWFd8yvOrUdPXvw8TYybQw6f7Ke8jo6iKLzYdoVOAC2MT/U97z6uOrOHJf0//eQtw9OeKgMvpF3gFPXy6W3rCNCW5cDdTNzxAtbGagYH9ebnvnCYTMxejUz2vP9lZJTVee+MNnnnuOe6fOpXXX30VMD+cfWLGDL7/4Qd0Oh1DBw/m7f/7P/z8TvxBzczK4sGHH2b9hg04Ozkx4ZZbePH559FqT/wGrt+wgSdmzGDvvn0EBwfz5PTpTJxQv77YBx9+yJtvv01ubi5dEhJ48/XX6fWfHQqnIkmNxlVVV+MopZLOK0lqCHF2tu3cSY+uXdt6GkII0WwSt4QQ1kbilhDibB0pqWbwu5uw0ahIerKfpYfBmqNrmf7PDGLdY/h6SMMy4lvztnHPhvtwsXFhxdW/Nkh6nMrZxq4DJQeYtfVFcqpyCXD0J8DRH3/Llx8hziGEu4Q1mJNJMbHo4PfM2/0+NcYaHDQOPNjlPsZGjrGU0GrK/uL9vLR9LnuL9wHgbOPM3Z3u5PqosS16+K0z6hizfDy51bk8mHA/46PGsbMwiW3529mWt509xXsxKkb8Hf0ZGNifgUEDSPTuUq9UlaIopJUd4t/cf/knZxP7ivdjUAwoimIpn6WgYP7/uv9TThw3KuY+tRqVhuujxnJnpym42Z4o96Q36vnh0FIW7PuEUn1Zg3tw1DrSw6c7vXx7YjAZyK7K5mjlMY5VHiO7MgedSWcZ28mjExNjJzAwqP9Zl9uqMdZw/Yobya7KoV/AFXRwi0atUqNSqVBj/v3bW7yPTXmb0RlPzMFJ60j/wP7c3OFG4jxiG5z3QMkB7lo/lfLacvr49ub/Lnu9RZ/ni0FzkxpnnAbaum0bCz79lIT4+HrHH3/iCX5fsYKvv/wSNzc3Hpk2jRtuuYV1q1YBYDQaGT12LH5+fqxbvZqcnBym3HknWhsbXpw1C4DD6emMHjeOO6dM4fNPPmHtunXce999BPj7M3TIEAC+X7yY6TNm8O7bb9O7Z0/enT+fa0aNYtf27fj6+p7pbQkhhBBCCCGEEEIIIVrZ8dJTYR4O9ZoyH28S/t/SU8d19+mGr4MPedX5/J2zsUFj7HNl3dH1PLN5FtVG87xL9aXsL0lpME6j0hDiHEyUaxSRrhGEuYTxw6El7CjYCUBPnx480/NpgpwCm3XdOI84Phu0gJ8PL+NYVTY3d7gRDzuPFs/fTmPHvZ3vYtbWF/lgz0e8t/sDDIqhwdxzqnL49uBCvj24EE87D/oH9qezZyeSCnexKXcTedX5Lb72ya4IuIyHujxIuEtYg9dsNbbc1OEGrg4byecpX7Is/RcCHAPo69eHvn59SPCKbzKRoygKGRWZLDy4iJ8P/8Le4r08+e9TBDsFMyHmJq4Ov+qUTddP5auUb8iuysHPwY+X+ryIvbbx89QYatict4UN2X/yZ/bfFNYU8lvm7/yW+Tu9fXtya8wE+vr1QaVSkVWRxf1/PkR5bTldPBN4/dK5ktA4C2e0U6OiooK+l1/O2//3f7wydy6JXbrw+quvUlpaSnB4OF98+iljRo8GICUlhcQePVi/Zg19evdmxcqVjB43jsMHDlh2b3y8YAFPP/ssR9LTsbW15elnnuH35cvZvmWL5Zq33nYbJaWlLPvxRwCuGDCAHt2789abbwLm5tbRsbHce889PD5tWrPuQ3ZqNK7WYMBGK9uezifZqSHE2cnJy8NfEtpCCCsicUsIYW0kbgkhztaXm48wZ8VBhsZ6M2/8iR+SfvDPh9mY+y9PdnuccVFjG33v27ve5X+pX9PZoxMfDniv2Q+rzyR2KYrCJ/s/44M9HwHQy6cn9ydMpbCmkJyqXLKrssmpyiG7KoeM8kzKa8sbPY+DxoGHutzPmMjRp92dca4YFSMTVt3GgdKDAPg5+NLDpwc9fXvQ06c7nvae/Ju7mbVH17Hh2J+N3oud2o4ePt3o69+XHj7dcdI6AipL+SaV+bu671WoqDuuAlu1He52rdeIuynFumIWHVzMorTvLTs+Qp1DeKH3LOI9O7foXDlVuYxdMR6dUcdLfV5kWMjQZr3PpJjYXbSHhQe/Z9WR1ZZdKtFuUYyLHMMXKf8juyqHGLcOfNj/PVxsXVp2kxeJc7pT46FHH+XK4cMZPHAgr8ydazm+fccOamtrGTRwoOVYbGwsISEhbNq8mT69e/Pvpk3Ed+5crxzVkCFDeODhh9m7bx9dExP5d9Omeuc4PubxJ54AzPXwtu/YUS95oVarGThwIJs2b25y3jqdDp3uxJag8vLGg87FTrppCCGsjVr6AAkhrIzELSGEtZG4JYQ4W4cLqwAI9zpR8lxRFPbV7X6Ia2KnBsDYyDEsPfwTe4r38tS/z/DqJS83qxRTS2NXjaGG57fO5o8j5oozN0RfzyNdHjrlboGCmgLSSg9xsCyNQ2WHOVR2CH9Hfx5MuI/AZu7OaA2qojRUBamYOgyHuiSKRqXhncv/jx0FO+nk0ZEgp6AGvSQGBPZjQGA/DCYDW/O3sfboOg6WphHv2ZlL/PvSzbsrdpoL+wdwPew8uLvznUyMncBP6cv4Yv//yKzIYsrau5jS8XYmx01qdumud5LnoTPq6ObdlaHBQ5o9B7VKTRevBLp4JXBf/D18e2ARPx7+iYOlabyy4zUAQp1DefeKtySh0QpanNRY9P337Ny5k783bGjwWm5eHra2tri7u9c77ufrS25urnlMbm6D8lB+dd9bxuTlNTqmrKyM6upqiktKMBqNjY5JTU1tcu6vvv46c15+ucHxncnJODk5kRgfT+rBg1TX1ODs5ITGxobqmhpMioKtjQ0KUFtbC4CDvT06vR6TyYRarcbO1pbqmhoAbGxsUAH6urH29vbU6vUYTSbUKhV29vZUV5u3rtlotajUavR6vXmsnR21tbUYTSZUKhUO9vZU1Y3VarVo1Gp0J481GDAajagABweHE2M1GjQajWWsna0tRqMRg9GcJXR0cKC6uhoF0Gg0aLVaS8JHURRMioLBYDgxtqYGRVHQaDTYaLXU1I21tbVFMZmorRvr4OBAzfGxajU2trbU1K2LrY0NiqKcGGtvj06nw6Qoja4hTa23SoWdnd2JsVotKpWq0fVWqVTYn269j6/hadbbzs4OQyut98lraGdrS63BgL62lj3799OtSxf27NuHTq/H3dWVAH9/9tV9rsNDQ9HpdGTX/VnpmpBAyoEDVNfU4OriQkhQEHv27wcgJDgYk9HI0exsABI6dybt8GGqqqpwcnIiMiyM5L17AQgKDEStUpF19CgAnTt2JDMri/KKChzs7YmJjiZp924AAvz9sbWxISMrC4COsbEcy86mtKwMOzs7OsXGsmPXLsD8Z9LRwYHDGRkAxHboQF5+PsUlJdjY2NClc2e2JyWhKAo+3t64uriQdvgwAB2ioigqLqawqAiNRkPXhAR2JidjNBrx8vTE08ODA2nmZllRERGUlZeTX1CASqWie2Iiu/bsoba2Fg93d3x9fEg5cACAiLAwqqqryc3LA6Bbly7sTUlBp9Ph5upKYEAA+1LM/6AKCwlBX1tLdk4OQL0Y4eLsTGhICHv2mWtchgQFYVIUjh4zN7hK6NSJQxkZVFZW4ujoSFREBMl79pjXOyAAtUZD1pEj5vWOiyPr6FHKystxsLcntkMHdiYnm9fbzw87OzvSMzPN6x0TQ3ZODiVlZdjZ2tK5Y0e2JyWZ19vHBycnJw6lp5vXOzqa/IICikpK0Gq1JMbHsyMpCZOi4O3lhburKwfr1js6MpKSkhIKiopQq9V069KFpORkDEYjnh4eeHt5kXrQ/JMdkeHhVFRUkFdQAECPrl1J3rMHfW0t7m5u+Pv5sf+kz2xNTQ05devdNSGB/amp1Oh0uLq4EBwUxN66z2xocDAGg4FjdevdJT6eg2lpVFVX4+zkRHhoKLvr1js40PwPwyN1620ymSguKaGishJHBweio6LYVfeZDfT3R6vVklm33p3i4jhSt972dnbExcRY1tvf1xd7e3vLesfFxJCTm0tJaSm2NjYkdO7Mtp07AfD19sbZ2dmy3jHR0RQUFlJUXIxWoyExIYEdu3ZhMpnw9vTE3d2dg4cOmdc7IoKSsjIKCgtRq1R0S0wkafduDAYDnu7u+Hh7k3LSeldWVpKbb97y2z0xUWIEEiMkRrQsRsR37Eh6ZuYFFSMMdX/+JEZIjACJERIjrOPfEcUlJZY/5xIjJEZIjJAYcSb/jtiVbv69CnGztdyrnZctxbpi1KgpT6+kxknXZIx4Km4Gz+2ZxYbsP5m26gleuvxFsnNyThkjdu/bh9vRo5YY8e+xTSwsXISiMeGJF342fsR4RhPj1YHi3FI+z/uCTF0mGpWGm7xvZIBmAFq19pQxorpch02BHZ1UnZnQ82ZLjKjJ11NB5XmJEQ6pS/H49yU0Jj21HcexN2YqlVU1lhjhVehDbmEB2gCbU8aIXh16YpNtxzAPCPD1w87Gjt3J+6wqRnSoiGFGwJP8XPUz63LX89HeBaxMW8Vr/V6h6lj1KWPE+sN/svLoH6hQMcZ9DNuTks4oRmQfyGMAA7i219WszFvF0oyl2KrteLPPaxQdLSG9PEtiRBP/jjjek+V0WlR+KuvIES674gp+XbbM0ktj6IgRlvJT3y1axF333ENZUVG9913evz/9+/VjzosvMvX++8nMyuKXn36yvF5VVYWnry8/LVnC8GHDiO/alYkTJjD9sccsY5avWMGosWMprvtHSmSHDqxbvZq+ffpYxjw1cyZ//vUXf65b1+j8G9upERUbK+Wn/kMahZ9/Un5KiLMjjSuFENZG4pYQwtpI3BJCnK0Bb/9DdpmObyd1o3uIuSTRumMbeGzjdDq4RfPt0K+afnNtFeo9i1njaMf0XW9jwsTkuElMjb/nlNc8HrsMJgOf7PuMBfs+tTS4boq7rTuvXvIy3X26tfgez7vaKrSrnkKze1G9w8aOozGMfBta0Fi8PVqeuZK5O16jvLYce409jyQ+xJiIUQ12q4C5VNfE1beTUpLK6IhRPN3jyVabx/HG6m1VhsyanJPyUzt27CAvP5++l11mOWY0Gvnr7795/8MPWfbjj+j1ekpKSurt1sjNy7OUm/Lz82Prtm31zns8Q2kZ4+tLXt2xk8e4urri4OCApu6n4hsbc3JZq/+ys7OTB8bNcLElcYQQ1q9zx45tPQUhhGgRiVtCCGsjcUsIcTaq9Eayy8w/aBzh5Wg5nlLXJDzOPbbpN1fkYrN0EuqcJIY5eFDc70HmpH7Gp/s/x9Pekxujxzf51s4dO5Jblcczm59je8EOAK4Lv4aRYVeSUZ5Jenk66WXppJdnkF2VQ0ePjrzSd/Z5LRt1plRFaWh/ugt1wT4UlRrjZY+jeEai/eU+NPuWgrEWw9XzQWPT1lNtMyNCh9HVO5Hnt7zIlvytvLx9LsszV3B73G1c4te3XnLj58PLSClJxdnGmanxd7fqPFSqE71GROtoUVJj4IABbNu0qd6xu+69l5iYGB575BGCg4OxsbFh7bp1jB41CoDU1FSysrLo07s3AH379GHua6+Rd1KJqdVr1uDq6krHuDjLmOUrVtS7zuq6RuNgLnnUvVs31q5bx7XXXAOYS4+sW7eOe+5u3Q/dxUiv12MvyR8hhBXJzMoiJjq6rachhBDNJnFLCGFtJG4JIc5GRpG5n4a7gxYPxxMP2fcVm8vRNNVPQ5W/D5sfbkVVbi71o6ou5oa/P6Swz618cGghb+z8PzzsPBjeRDPnn3b/zEdHF1CqL8VR68hT3Z9kROgwAHr4dK83ttZUi43aOhIA6pRlaJdPQ6WvQHH0ofaa91BCzT+EbtDYof35LjSpv8DPegzXfAjai/c5n7+jH/P7vcN3BxcxL/k9dhTsZMdfO4lx68DE2FsZEjyIakM183d/AMBdne7Aw86jjWctTqdFSQ0XFxc6d67fMd7R0REvT0/L8UkTJzJ9xgw8PDxwdXXl0cceo2+fPpaExJDBg+kYF8fkO+/kpdmzyc3N5fkXXuDuu+6y7KK4Y8oU3v/wQ56aOZPbbr2VdevX88OSJfz4ww+W6z54//3ccffddO/enV49evDu/PlUVlUxccKEs1oQYU4QCSGENSmvqGjrKQghRItI3BJCWBuJW0KIs3G40NyT9ORdGgD765qEd2wkqaE6vBabn+9Gpa/A5BGJ4ap30S5/FHVBCvduW0RR4lUsyvyV5zY/z67CXdiqbVGr1KhRo1apyavOY1nGr4B5J8jLfWcT4hzS5BzbIqGhKj6Eetc3qCpyUfwSMPknovglgE39daK2GlXuLtRHt6DK+hfN4TUAmIL7UnvN++B8onKNKXoYtaM/w+bHKWgOrkT142Rqr1sANhdQqXnFZGlmfj6oVWpu7nAjg4MG8c2Bb1ly6EdSSw8wc/OzvL/nA4KdginRlxDhEs74qHHnbV7izLV6YbXX5s5FrVZz04QJ6HQ6hg4ezNtvvWV5XaPRsGTxYh58+GH6DxqEk6MjE265hedmzrSMiQgPZ+nixUx/8knmvfceQUFBvD9/PkOHnOg4f/24cRQUFPBCXWIksUsXfl669JTlp0TzqBupK3ehGzRoEIldu/J/b74JQGRUFA89+CAPPfTQeZ3H5198waOPPkpRYeF5va4QFzsHKZsnhLAyEreEENZG4pYQ4mwcLjTv1Dg5qVFQXUBBTQFq1MS4dag3Xr3jC7SrZ6JSjJhCLqX2uo/BwYPa67/F9ptRqEsyeHLPGopj+vFH9gYWHvy+yWvfGD2eBxPux1Zje25urqVMBtQH/0Cz8wvUGRtOHN9r/mFuRaVB8Y5F8U9EsXVCfWwbqtxkVCZDvdMYet+H8YonGu2boUQMpHbMl9gsvQ314bXY/HArhkseRgnuDW21DoYa1AdXoEn+DlXGn+AajCm4D6ag3ijBvVE8o+G/zyQVBWoroaoINFqwcTInfM6wpJafoy+PJD7E5I6T+D7tB747sIijlcc4WmneCfRo4sNoz2cfEsWEqiQdxSPy/F2znWhRo/D25lSNR6y5UXhOTg6vzJ3Lb7/9xpEjR3BzcyM6Koqbb7mF2yZOxNHR/BdIZFQUGRkZADg4OBAVFcUDDzzAlMmTLTXlTvWQXqPV8sMPPzDquusancegQYNYv8EcnO3s7IiMjOS+qVO59957W/2e/5vUyM/Px8nJyXKvp9KaiYgzPZc0Chfi7BgMBrTai7sBmhDCukjcEkJYG4lbQoiz8djSvSzbncejAyO4+/IwAP489hePbHyMSNdIFg37xjxQMaFZ9yLarR8CYOw8HsPwV+s/iC/JwPabUagqc6kJ6MbiXreQrSvCpJgwYUJRFIyKEYBLfS/h8qDLaHOKAiUZaPb+gGbXN6gqss2HUWGKHIQS0A1VbjLq7J2oKnMbP4WTL6agXiiBPTGFXYHi2+m0l1Ud2YTN4gmoaivN57B1xhTWD1PkIEyRg+vt8DhXVLnJaJK/Q71vKaqakibHKQ6emAK7g6KgqipAVVUAVYWoDDUNx2rswNYRbJww+SVgihiEKXIguLSsF0qNoYaf039h6eEf6ebdlendHjv9mxQFVfp61AUpYKgBQ7V5J01tNRiqUdxCMHa5GVyDmz6HyYB6309oNr2Lqiof/V1bzPcjzk2jcHHhO3ToEFf064e7uzuzZ88mIT4eOzs7knfv5uOPPyYoKMjShwTg+VmzuOOOO6iqqmLx4sXcfffdeHt7N5moaKk77riD52fNoqqqiv/973/c/8ADuHt4cNONNzYYq9frsbVtnWyxj49Pq5xHCGEdknbvpkfXrm09DSGEaDaJW0IIayNxSwhxNhorP3W89NTJTcLVqb9ZEhqGy5/A2PfBhj+97x5G7fXfYvPdGOyzd3DzTidqx34J2oY/lLxt504IauWbOU5XBrpysHUy7yA4efeAQWdOUhzbiuroVvOvlXmWlxVHL4wJN2HsMgHcQ+uftzwbdc5OVNk7obYKJaAbpqBe5ofkLayuogT3ofbmn9Bs+xj1oTWoqvLRHPgNzYHfADD5dDLvCvGMMn95RKF4RjYsf3WymlJUZUdQlR2BsiOoSo+YEzHGWjAZQTGgMhnBZIDKPPPD/+PzcQnEGD8eU9x15vs8sgn10c2osnegqi5Ck7aq8fvQ2oPJYNmtojLqoFoH1cVoyo6gOfC7+X684zBFDDQnioL7NLqL5WT2WnvGR49jfHTzSk6pCg+gXfU06sy/TjlO8+87mKKGYew2CSXsihO/b4Ya1LsXod38HqrSTPO92bqgyttt3kUjmk2SGu3Mffffj1arZfOmTTg5OVmOR0ZGct2116Io9TfmuLi44O/vD8D06dN57fXXWbNmTaslNRwdHS3nf+655/j2u+9YtmwZN914I4MGDaJzfDxarZavv/6ahPh4Vq9eze7du5n+xBP89ddfODk5MXToUN584w28vb0BqKysZOp997F06VJcXFyY9uijDa773/JTJSUlPDljBj/99BOlpaVER0fz0pw5ODs7M2XKFMC88wTg2Wee4bnnnkOn0zFz5ky+W7iQkpIS4jt35uWXX2bAgAGW63z+xRfMmjWLgoIChg0bxuWXXQDZfyGEEEIIIYQQQogLhKIojZafOt4k/OR+GqqjWwEwJt6K8ZKmS4orPnHUjv0Km0XjUWf+hc3iCdRe9U6Lf1K/2RQFSrNQH91ifgh/dAuqghRUnHjOpmhs68ojOUBVASqjvv4p1DYoQb0wJt6CqcPIppt3uwRgcgmADle2ztR9O2G48v/MpY5yk1EfWo360GpU2TtR5++F/L0N3+PoA2qNufeFogCK+b+NelT6lvVYUjS2mDqMwBh/o/kBv1pjfsE7FmPEAIxgSQKpcneZ18/RG6XuCwevE7sYjHrQV0JtJSp9FVQXoc7aiPrQWlTZ21EX7EddsB+2vI/JMwrjwOcxRQ46m+Uz01eg2fgmmm0LUJkMKFp7TFFDwc4VxcYBtA7meattUKevR535F5qDy9EcXI7JMxpjt0moDDo0Wz+0JLcURy+MPe7C2O02sGt6R4JonCQ1mklRFKqNDbc7nQ8OGntLOahTKSws5I8//mDO7Nn1Ehona+o8JpOJpT/+SHFx8Tmtlerg4IBefyKof/nll9xz9938WVemqqSkhCFDhzJl8mTefOMNqqureXLGDG688UZWrTJna6c/8QQbNmxg6ZIl+Pr68vTMmWzfsYPEJn5qyGQycdVVV1FeUcGXX3xBVFQUe/fuRaPRcOmll/J/b77Jc7NmsW+vOYg7OzsD8MCDD7Jv716++fprAgMD+fHHHxl51VUk7dxJhw4d2LRpE3feeScvzZnDddddx4oVK5j1/PPnbO2EEE0LqEueCiGEtZC4JYSwNhK3hBBnqqBST6XeiAoI8zzRrDrF0iT8pJ0aBeZEh8k/8bTnVQK7Uzv6c3PfiKyN2H42GMOwuZjirrWMOavYpSiojmxCs+sb1Bl/NloWSlHboDLVApiTGEY91BSbX3P0whTY01wuKqgnil+Xtm3WrVKj+Cdi9E/EeOmjUFmA+tgWVEVpJ76K01BVF6Oqyj/lqRQHTxTXYMsXLgEoWjvzzgi1BlR1v2rsMIVeCg4ep56b1g4lqCdKUM9Tj9PYgoMtOHhY0knGkL7m+6kuMicUDq01J26K0lD/MAFj5GCMA58z9+xoKUVBvf9HtOteRFWRY75e9DAMA19ouMPm+Hz63IeqIBXNzs9R7/4eddFB1KtP9JJWXAIx9L4XU8JNp94RI05JkhrNVG2s4ZLvLmmTa/9z4z84ak8f9A4ePIiiKMTExtY77uvnR02NOSEz9d57eeWVVyyvPTljBs88+yw6nQ6DwYCnpye3T57cujcAGI1Gvv3uO3bt2sWdd9xhOd6hQwfmzp1r+X7OnDl07dqVOXPmWI59smABYeHhpKamEhgYyKeffsqXX37J4MGDAfj8s88IDQtr8tqrVq1i85Yt7Nm9m5iYGMC8c+U4Vzc3VCqVZUcJQGZmJp9//jnphw8TGGjO8k+bNo0VK1bw+eefM2fOHN55912GDx/O448/DkBMTAwb//mHFStWnM1SCSHOgK3NmTUJE0KItiJxSwhhbSRuCSHO1PHSU0Hu9thq1QAU1RSRW52HChUx7jGWsaq6UkWKd1zDEzVCCbuc2okr0P76AOqcJGyW3YMxbRWGIbPBzvXMYld1MZo9i1Hv+gp14YET11LboPh1MScogntjCuwFTt7mREZtFegrUdVWgb4Cxd4d3MNbXC7qvHLyxtTYbpDqIlRl5sbZ5vmrQKU2/7dai+IccGH2f3DwxNRxNKaOo0FXjuaf/0Oz7RM0h1ajTl+PsfsUjJc+0vxdEaVZ2CyfZik1pbiHYxj8orkXyWko3jEYhrwEV8xAvWcxmmRzzxhj9ymYOo1pu2bt7YgkNS4C//7zDyaTiVtvvRWdvv7Wt8emTeO2224jOzubJ554gnvuvZfQ0MYzjWfi/fff55NPPkGv16PRaHj4oYe45557LK9379693vikXbtYt24drm5uDc6VlpZGdXU1er2ePr1P1Jnz9PQk9j+JnHrnTEoiODjYktBojuTkZIxGI3EdO9Y7rtPp8PTyAmD//v0NynRd0revJDWEaAMZWVl41/3ZFEIIayBxSwhhbSRuCSHOVGOlp4730whzCcVRW3e8utiyG0Lxbv4zHMUzmtqbfzY/xP73HTR7F6M+8i+1V71LRr4t3vYmVIUHzF9FB1AXHQKVyrzbwMETHDxRHDzAzsX8U/6pv1iaUys2jpg6jsbYcTRKQNfGf7JeY2v+sndHafiq9Tm+LtbMzgXjgGcxdbkFzbrn0aStQrv1QzR7F2O4dJp5l0RT5b8UBfWexWhXP41KX4GitcfY90GMve5ptG/L6eZh6n47pu63n/UtifokqdFMDhp7/rnxnza7dnNER0ejUqlITUmpd/z4rgQHh4a7Pby9vYmOjiY6OpqFCxeS2LUr8fHxdO/WDQBXV1cqKysxmUyo1WrL+0pKSgBwO0UXeoCbb76Zp2bMwMHBgYCAgHrnABqUyaqoqODqq6/mlZdfbnCugIAADh48eMrrNaax+z6dispKNBoNWzZvRqPR1HvteHkqIYQQQgghhBBCCHFqJ5IaJ57PHCg1P9+pt0ujMBXAXM7ItoXPXjQ2GC+fjil8ADa/PYiqNBObb8fQS+uEzaqW9YAAcwNtY9eJ5p/6t3Np8fvFhUHxjMIw5kuMh9eiXfMc6qKD2Kx6CmXzfAx9H8YUP75+g/fqIrQrn0ST+gsApsCe1I58BzzC2+YGRJMkqdFMKpWqWSWg2pKXlxdDhgxh/nvvcf/99zfZV6MpISEhjB8/nheef54ff/wRgNiYGAwGAzt37qy3q2L79u0Ap9394ObmRnR082vWde/WjSVLlxIeHo5W2/DjGRUVhY2NDZs2b7bsKCkuLiY1NZV+/fo1es6EhASOHDlCampqo/O1tbXFaDTWO9ata1eMRiN5eXlcccUVjZ43Li6OTZs31zv276ZNzbpPIUTr6niK3VpCCHEhkrglhLA2EreEEGcqva781Mk7NXKqzDsygpxONPZW5df102hm6anGKMG90d/2B9o1z6LZvRAbQwUKKnALxeQVjeIZjeIVDWotqqoic6mlmmKoMv+qeERi7HILSkC3C7t0lGgRJWIgtZMuR530Fdp/30FVdhSblY+jbHoXwyUPY+o8DlXGX9j8/giqylwUtRbjZY9h7H3ficbm4oIiSY12Zv68eVzRrx+9+/Th2WefpUtCAmq1mi1bt7I/JaVBuaf/evCBB+iSmMjWrVvp2bMnnTt3ZujQodxx55289uqrREZGkpKSwqPTpjF+/HiCgoJadf5Tp05lwSefcPMtt/D4Y4/h6enJwYMHWbhoER9/9BHOzs5MnjyZJ554Ai9PT3x9fZn5zDMNdoCcrH///vS74gquHz+e1197jejoaPbv349KpWLEiBGEh4VRUVHB6tWrSUxMxNHRkZiYGG6++WYm3X47r732Gt26diU/P581a9aQkJDAVVddxQP3388V/frxxhtvcO2117Jy5UopPSVEGzmWnU30Sb1yhBDiQidxSwhhbSRuCSHOVGPlp3KqzE2X/R1P9Dc93iRc8T7LJKqdC4Yr/w9jr3vJzDxMSEK/tm3QLS4MGhtM3W9Hn3Ajml1fo/n3XfOOnuWPovz1qqURuMkzCsNV81Ca0axetJ2mnwQLqxQVFcW2rVsZPHgwTz/9NN26d6d3nz7MnzePaY8+ygsvvHDK93fq1InBgwfz3KxZlmPfffst/fr1496pU0no0oWHH3mEa6+5ho8/+qjV5x8YGMifGzZgNBoZceWVJHbtyqPTpuHu5mZJXLw6dy6XX345140axbDhw7n8ssvocZpkzffff0/Pnj25ZcIE4hMSeHLGDMvujEsvvZS7776bm26+GT9/f1577TUAPv3kE26dMIHHH3+cjp06MWbsWLZs3WrZIdK3b18+/PBD3nn3Xbp1787KP/7g6aeeavU1EUKcXmlZWVtPQQghWkTilhDC2kjcEkKcCb3RRFbx8Z0aJxILuXU7Nfwd/CzHTjQJb52dYYp3DHlqP0loiPpsHDD2uAP9Xf9gGPAsiqOXJaFh7DaJ2okrJKFhBVQ1FRXtoofNmSgrK8M3MJC8Y8dw/U9vCJ1Ox5HsbMLDw7G3b2ETGCtXXVODw0V2z22tpqaG9PR0ggMCsLNrolGREKJJu/ftI75jx7aehhBCNJvELSGEtZG4JYQ4E2kFlYx8fwuONmq2P3EFqrqSToN/Hkapvozvhn5NtFsUKAq28+NRVRejn7gCxS+hVa4vsUuclr4S9d4fUDyjUEIva+vZXPRO9bz+ZFJ+SjQgCQ0hhLXpJDWehRBWRuKWEMLaSNwSQpyJ4/00wr0cLQmNakM1pXrz7i9L+anKfFTVxSgqNYpn83uzno7ELnFatk6Yuk5s61mIFpLyU6KBqurqtp6CEEK0yI5du9p6CkII0SISt4QQ1kbilhDiTBzvpxHu2bD0lLONM842TgCojvfTcA9v1XJREruEaJ8kqSGEEEIIIYQQQgghhGh16UUndmocl1OX1PA7qZ+GupX7aQgh2jdJaogGtFqpSiaEsC5+vr5tPQUhhGgRiVtCCGsjcUsIcSYyihru1MipNjdl9nc8qUl44blJakjsEqJ9kqSGaECtlo+FEMK6ODq03vZkIYQ4HyRuCSGsjcQtIcSZaGynRm5VHgB+Jyc18o8nNeJa9foSu4Ron+TpdVPqmhcpitLGEzn/9Hp9W0/homP5nNV97oQQLXM4I6OtpyCEEC0icUsIYW0kbgkhWqpKbySv3PyMKezknRpVdTs1jpefUpQTPTVaOakhsUuI9knqDDVBq9WiUqkoLCzEy8sL1UX0sFmn06G+iO63rSmKQmFhISqVSkp/CSGEEEIIIYQQol3IrNul4e6gxd3BxnL8eE8NS/mpsqOoaitR1DYoHhHnfZ5CCOsjT1CboFGr8ff1JScvj4qKiraeznllUhRJapxnKpUKf19fNFL6S4gzEtuhQ1tPQQghWkTilhDC2kjcEkK01GFLPw3Hesdzq+sahdclNdTHd2l4RoHGhtYksUuI9kmSGqfg6OBAWEgIBoMBLqIyVFlHjxIcGNjW07h41O3QkISGEGcuLz8fZyentp6GEEI0m8QtIYS1kbglhGipjLqdGieXnlIUxdJTw9/RHwBVwblpEg4Su4RorySpcRoatRqNrW1bT+O8Ki0rIzoysq2nIYQQzVZcUtLWUxBCiBaRuCWEsDYSt4QQLdVYUqNEX4LOpEOFCl8HH+DkpEbr9tMAiV1CtFfyo+GiARub1t3qJ4QQ55rELSGEtZG4JYSwNhK3hBAtlW4pP3Vyk3Bz6Skvey9s1Oa4cqJJeEyrz0FilxDtkyQ1RANdOndu6ykIIUSLSNwSQlgbiVtCCGsjcUsI0VKWnRpeJ3pq5FTlACc1CTcZURUeMP/nOdipIbFLiPZJkhqige1JSW09BSGEaBGJW0IIayNxSwhhbSRuCSFaorzGQGFlLVB/p0Zu3U4NPwdzUkNVko7KqEPR2oNbaKvPQ2KXEO2TJDVEA8pF1BRdCNE+SNwSQlgbiVtCCGsjcUsI0RLHS095O9ngbHeipe/x8lPHd2qoClIBULxiQK1p9XlI7BKifZKkhmjAx9u7racghBAtInFLCGFtJG4JIayNxC0hREucaBLuWO94TnXdTg1LUuN4P43YczIPiV1CtE+S1BANuLq4tPUUhBCiRSRuCSGsjcQtIYS1kbglhGiJdEtSw6He8dwGOzXObVJDYpcQ7VOLkhofffwxPfv0wScgAJ+AAPoPGsSKlSstrw8dMQJ7Z+d6X/c/+GC9c2RmZTFq7Fg8fHwICQ9nxtNPYzAY6o1Zv2EDfS+7DFdPTzp16cKXX33VYC4ffPghMZ064eblxRUDBrBl69aW3Io4hbTDh9t6CkII0SISt4QQ1kbilhDC2kjcEkK0xPGdGhFe9ZMalvJTDv4AqApSAFDOQZNwkNglRHvVoqRGUFAQs194gX/+/JONGzbQv18/xt1wA3v37rWMmTxpEulpaZavl2bPtrxmNBoZPXYser2edatXs+Cjj/jfV1/x/EljDqenM3rcOPr368fmjRt5YOpU7r3vPv5Ytcoy5vvFi5k+YwZPz5jBv3/9RUJ8PNeMGkVeXt7ZrIUQQgghhBBCCCGEEOIspReae2qcXH7KYDJQUFMAgJ+jLxj1qIoPAWA6Rzs1hBDtU4uSGleNHMmI4cOJjo6mQ4cOvDBrFs7OzmzassUyxtHREX8/P8uXq6ur5bVVq1ezb/9+PluwgMQuXRg+bBjPPfMMH370EXq9HoAFn3xCeFgYc19+mbi4OO695x7GjBrFO/PmWc7zzrx5TJ40idtuvZWOHTsy7513cHRw4Iv//e9s10MAHaKi2noKQgjRIhK3hBDWRuKWEMLaSNwSQrRERiPlp/Kq81BQsFXb4mHngaroECqTAcXWBVwCz8k8JHYJ0T6dcU8No9HIou+/p7Kykr69e1uOf7dwIUGhoXTv1YuZzz1HVVWV5bV/N20ivnNn/Pz8LMeGDBlCWVkZe/fts4wZNHBgvWsNGTKETZs3A6DX69m+Y0e9MWq1moEDB1rGNEWn01FWVmb5Ki8vP9Pbb9eKiovbegpCCNEiEreEENZG4pYQwtpI3BJCNFdxVS2lNeZS8ycnNY6XnvJz9EWtUp/UTyMGVKpzMheJXUK0T9qWvmH37t30HzyYmpoanJ2dWfTtt3Ts2BGAG8aPJyw0lAB/f5L37GHmM89wIDWVhd9+C0Bubi6+vr71zudX931urjmw5eblNTqmrKyM6upqiktKMBqNjY5JTU095dxfff115rz8coPjO5OTcXJyIjE+ntSDB6muqcHF2ZnQkBD21CVbQoKCMCkKR48dAyChUycOZWRQWVmJo6MjURERJO/ZA0BQQABqjYasI0cA6BwXR9bRo5SVl+Ngb09shw7sTE4GIMDPDzs7O9IzMwHoGBNDdk4OJWVl2Nna0rljR7YnJZnv0ccHJycnDqWnAxAbHU1+QQFFJSVotVoS4+PZkZSESVHw9vLC3dWVg3W1A6MjIykpKaGgqAi1Wk23Ll1ISk7GYDTi6eGBt5cXqQcPAlBbW4tGrSavwLwlsEfXriTv2YO+thZ3Nzf8/fzYX7fW4aGh1NTUkFNX+qtrQgL7U1Op0elwdXEhOCiIvfvNf0mFBgdjMBg4lpMDQJf4eA6mpVFVXY2zkxPhoaHsrlvv4EBzhv5I3XrHd+xIemYmFZWVODo4EB0Vxa7duwEI9PdHq9WSWbfeneLiOFK33vZ2dsTFxFjW29/XF3t7e8t6x8XEkJObS0lpKbY2NiR07sy2nTsB8PX2xtnZ2bLeMdHRFBQWUlRcjFajITEhgR27dmEymfD29MTd3Z2Dh8zbJqMjIigpK6OgsBC1SkW3xESSdu/GYDDg6e6Oj7c3KXXrHRkeTmVlJbn5+QB0T0xkz7596PR63F1dCfD3Z99J663T6ciu+/PSNSGBlAMHqK6pwdXFhZCgIPbUrXdIcDAmo5Gj2dnmz2znzqQdPkxVVRVOTk5EhoWRXFc6LigwELVKRdbRo+bPbMeOZGZlUV5RgYO9PTHR0STVrXeAvz+2NjZkZGWZP7OxsRzLzqa0rAw7Ozs6xcayY9cu82fW1xdHBwcOZ2SYP7MdOpCXn09xSQk2NjZ06dyZ7UlJKIqCj7c3ri4ulnqXHaKiKCouprCoCI1GQ9eEBHYmJ2M0GvHy9MTTw4MDaWkAREVEUFZeTn5BASqViu6Jiezas4fa2lo83N3x9fEh5cABACLCwqiqria37jPbrUsX9qakoNPpcHN1JTAggH0p5pqeYSEh6Gtrya77zEqMOPGZraiouKBihMlkQqfTSYyQGCExQmIEYB3/jjAYjRSXlEiMkBhhXm+JERIjrODfEcUlJRQWFZk/sxIjJEZIjAAkRjT174gyrScAnvYq9u5JtsSIf3PNP4zsY+/Dtp07CTm4nhCgyjmcXXX33tox4lB6OoVFRRIjJEZIjLiAYsSp/h2hKArNoaqpqGjeyDp6vZ6srCxKy8pY8uOPfP755/yxfLklsXGytevWceXVV7Nn1y6iIiOZev/9ZGZl8ctPP1nGVFVV4enry09LljB82DDiu3Zl4oQJTH/sMcuY5StWMGrsWIrrgk9khw6sW72avn36WMY8NXMmf/71F3+uW9fk3HU6HTqdzvJ9eXk5UbGx5B07Vq9M1sVuZ3IyXRMS2noaQgjRbBK3hBDWRuKWEMLaSNwSQjTXj7tyeOKn/fQJd+fLW7tajn+2/wvm736fq8NGMqvXs2iX3o7m4AoMg17A2OOOczIXiV1CWJeysjJ8AwNP+7y+xTs1bG1tiaqrR9e9Wze2bdvGvPfeY/677zYY27tXLwAOHTpEVGQkfn5+bN22rd6Y49nJ4yWp/Hx9GzT8zs3Lw9XVFQcHBzQaDRqNptExJ5e1aoydnR12dnYtuNuLkwR7IYS1kbglhLA2EreEENZG4pYQornSC839NMJPKj0FkFNl/il4Pwfz8ztVgfknvM9lk3CJXUK0T2fcU+M4k8mErq7J938l1W358vf3B6Bvnz7s3rOnXkJi9Zo1uLq60jEuzjJm7X92W6xes4Y+dX07bG1t6d6tW70xJpOJdevWWcaIs3N825MQQlgLiVtCCGsjcUsIYW0kbgkhmiujyNxfN+w/SY3cKvPzQH9HP6itQlWSDoDiHXfO5iKxS4j2qUU7NWY+9xzDhw4lJCSEivJyvvv+ezb8+SfLfvqJtEOHWLhoESOGD8fT05Pdu3fz+JNPcvlll5EQHw/AkMGD6RgXx+Q77+Sl2bPJzc3l+Rde4O677rLsoLhjyhTe//BDnpo5k9tuvZV169fzw5Il/PjDD5Z5PHj//dxx9910796dXj168O78+VRWVTFxwoRWXJqLl9FobOspCCFEi0jcEkJYG4lbQghrI3FLCNFcGUXmnRphno71judUm3dq+Dv6oyo8iAoFxcETHL3P2VwkdgnRPrUoqZGfn8+Uu+4iJycHN1dX4uPjWfbTTwwZNIisI0dYs3Yt8957j8rKSoKDgxl93XU8OX265f0ajYYlixfz4MMP03/QIJwcHZlwyy08N3OmZUxEeDhLFy9m+pNPMu+99wgKCuL9+fMZOmSIZcz148ZRUFDAC3WJkcQuXfh56dLTlp8SzePl6dnWUxBCiBaRuCWEsDYSt4QQ1kbilhCiORRFIb0uqRHRxE4NP0c/VJlbzOO940ClOmfzkdglRPvUoqTGh++91+RrIcHBrFqx4rTnCAsN5aclS045pn+/fmzauPGUY+695x7uveee015PtJynh0dbT0EIIVpE4pYQwtpI3BJCWBuJW0KI5iisrKVSb0StghCPE0mNitpKymvLAfBz8EWVtxsAk8+5Kz0FEruEaK/OuqeGaH8OpKW19RSEEKJFJG4JIayNxC0hhLWRuCWEaI70un4aAW722GpPPHbMrcoFwMXGBScbJ9TZOwFQ/Lue0/lI7BKifZKkhhBCCCGEEEIIIYQQ4qwdLz0V/t/SU9XmpIa/ox+YDJadGop/4vmdoBCiXZCkhmggKiKiracghBAtInFLCGFtJG4JIayNxC0hRHNkFB5vEl4/qZFTdSKpoSpIRWWoQbF1RvGMOqfzkdglRPskSQ3RQFl5eVtPQQghWkTilhDC2kjcEkJYG4lbQojmyKgrPxXu6VjveE5VDgB+Dn6ocpMAUPy6gOrcPpqU2CVE+yRJDdFAfkFBW09BCCFaROKWEMLaSNwSQlgbiVtCiOZouvxUHgD+jv6os81JDZN/l3M+H4ldQrRPktQQDahUqraeghBCtIjELSGEtZG4JYSwNhK3hBCnY1IUMoqaKj9l3qnh73jSTo1z3CQcJHYJ0V5JUkM00D1RmjQJIayLxC0hhLWRuCWEsDYSt4QQp5NXrqPGYEKjgiB3+3qv5VaZd2r42XqgytsLgOk8NAmX2CVE+yRJDdHArj172noKQgjRIhK3hBDWRuKWEMLaSNwSQpzO8dJTwR4O2GhOPHI0KSZyq82NwgOqy1GZalEcPMAt9JzPSWKXEO2TJDVEA7W1tW09BSGEaBGJW0IIayNxSwhhbSRuCSFOJ6OJfhpFumJqTbWoUOFTnAGA4pcI56E0lMQuIdonSWqIBjzc3dt6CkII0SISt4QQ1kbilhDC2kjcEkKcTnoT/TRyq8y7NHwcvLHLTQbOT+kpkNglRHslSQ3RgK+PT1tPQQghWkTilhDC2kjcEkJYG4lbQojTSS+sAiDc07HecUuTcAd/VDm7AFDOU1JDYpcQ7ZMkNUQDKQcOtPUUhBCiRSRuCSGsjcQtIYS1kbglhDidjCZ2auTU7dTws/dCVZgCnL+dGhK7hGifJKkhhBBCCCGEEEIIIUQ7UFipZ3VKAWn5lRhMpjM+T3mNgcyiakyK0qzxRpNCZnFdTw2v/5SfqmsS7q+oUSkmFCc/cAk447kJIYS2rScgLjwRYWFtPQUhhGgRiVtCCGsjcUsIYW0kbglhHR7+YS+bM0oAsNOq6eDjRJyfE7F+zkR4OaJVN2zOXV1rJL2wmsOFVZavgkpzg21fF1sGxXgzKMaLvuHu2Gk1jV43u6yGWqOCjUZFgKt9vdeO79Tw15nLU5kCzs8uDZDYJUR7JUkN0UBVdTWeHh5tPQ0hhGg2iVtCCGsjcUsIYW0kbglx4csurbEkNBxt1FTVmtidXc7u7PIzOp+NWkVeuZ7vth3ju23HcLTVcEWkB/07eBHt40SQmz1eTjaoVCpL6alQDwc0/0mcHG8UHlCeD4Did/6SGhK7hGifJKkhGsjNyyM4MLCtpyGEEM0mcUsIYW0kbgkhrI3ELSEufCv2m5MGPULc+Oq2rmQWVbM/t4L9uZXsys0is2o/dvoEVNTfbWGjURPq4UCElyMRXg5EeDsS6eWIjUbFv+klrEktZE1qAXnlelbsL2DF/gLLe+20agJc7VCrzImM//bTAMipKz8VWJQOgCmg6zm4+8ZJ7BKifZKkhhBCCCGEEEIIIYQQVm7FPnNSY0QnH9QqFeFejoR7OTKiE0zd8AYleVsZHjKMF3o/h0bVeBmp/+of7UX/aC9mXdmB3dnlrEktZFN6CUdLa8gt06EzmEiv26UBEOvrXO/9eqOewppCAAKKMgBQ/Lq0xu0KIS5iktQQDXTrIn+5CCGsi8QtIYS1kbglhLA2EreEuLDllunYnlUGwLA473qv5VfnsyVvGwArslZiq7HlmR5PoVapGz2XSTHxZcpX/Jz+C+62bgQ6BRDkFESQcxCXdw7kpj7B+Dr4ojeayC3TcbS0hmOlNVTpjVyb4FfvXHnV5kSLnUqLh8mE4hYCjl6tfftNktglRPskSQ3RwN6UFOI7dmzraQghRLNJ3BJCWBuJW0IIayNxS4gL28q60lPdgl3x/0+j7lVH1qCg4OvgQ0F1IcvSf8FObcsT3R5Hparf/6JcX86zW57nz+y/AMgEdhUlN7heJ49OXBt+FcNChhJyip4VOVU5APhpHFABxvPYTwMkdgnRXklSQzSg0+naegpCCNEiEreEENZG4pYQwtpI3BLiwrb8eOmpjj4NXvsjaxUAE2Mm4GrrynNbXmDxoSXYaex4uMuDlsTGwdI0Hv/nCbIqjmCrtuXBLvfjY+/N0cpjHK08avn1WGU2e4v3srd4L28mvc2AoP5cG3Y1vfx6olFpMCpGyvRlFNUUszXfvEMkwKgAoPif36SGxC4h2idJaogG3Fxd23oKQgjRIhK3hBDWRuKWEMLaSNwS4sKVV65jW2YpAMP+k9TIqcphV1EyKlQMDh6Ej4MPepOe2dte5usD32Kvsefe+LtZkfUHL26dQ42xBn9Hf17t+zKdPBvf4VBUU8RvmctZlv4raWVprMz6g5VZf+Bh54EKKNGVYsJU7z2B1eXA+W0SDhK7hGivJKkhGggMCGjrKQghRItI3BJCWBuJW0IIayNxS4gL1x/7C1CAxCAXAt3ql576I2s1AN28u+LjYE54jIq4jhqjjtd3vskn+z9jZ2ES2/K3A9Dbtxcv9XkRdzv3Jq/nae/JhJibuaXDTewvSeHn9F9YkbmSYl1xvXFutm542nngY+vOTbt+B0DxS2ilu24eiV1CtE+S1BAN7EtJoUfXrm09DSGEaDaJW0IIayNxSwhhbSRuCXHhWr4vD4ARHX0bvLbyyB8ADAsZUu/4jdHj0Rl1vJs835LQuD32Nu6JvwuNStOs66pUKjp6xNHRI46HuzzAvuL9OGkd8bD3xN3WDa3a/NhRfWgNNlt/xuQZBXbnd+eExC4h2idJagghhBBCCCGEEEIIYYUKKvRsyTCXnhr+n9JTWRVZ7Cvejxo1g4IGNnjvbbG3olGpWZb+G/d0vpOBQQPOeB52Gju6ejfeL0OVkwSAcp6bhAsh2i9JaogGwkJC2noKQgjRIhK3hBDWRuKWEMLaSNwS4sK0cn8+CpAQ6EKQe+Olp3r59sTT3rPR90+IuYUJMbec0zmqcnYCoJznfhogsUuI9kqSGqIBfW1tW09BCCFaROKWEMLaSNwSQlgbiVtCXJhW7MsHYMR/dmkA/HFkFQBD/1N6qtmMelRFh1AV7EdVmIoqfz+qghRUlTkoAT0wRQ7CFDkYxTMaVKomT6PO2QWAyf/879SQ2CVE+6RuyeCPPv6Ynn364BMQgE9AAP0HDWLFypWW12tqanjokUcIDA3Fy8+PG2++mdzc3HrnyMzKYtTYsXj4+BASHs6Mp5/GYDDUG7N+wwb6XnYZrp6edOrShS+/+qrBXD748ENiOnXCzcuLKwYMYMvWrS25FXEK2Tk5bT0FIYRoEYlbQghrI3FLCGFtJG4JceEprNSzOaMEaFh6Kr0snQOlB9GoNAwM6t/8k5oMqNP+QLt0ErZvdcD280HY/DIV7T9voTm4HHXJYVS11agz/0K77gVsP+2P7ceXolk9E/WhNVCaBcaTEgnl2agqc1FUGhTfzq1w1y0jsUuI9qlFOzWCgoKY/cILREdFoSgK//v6a8bdcAOb/v6bTp068fgTT/D7ihV8/eWXuLm58ci0adxwyy2sW2XODBuNRkaPHYufnx/rVq8mJyeHKXfeidbGhhdnzQLgcHo6o8eN484pU/j8k09Yu24d9953HwH+/gwdYs4sf794MdNnzODdt9+md8+evDt/PteMGsWu7dvx9W3YFEkIIYQQQgghhBBCtE+l1bXMWXGQy6M8uTbBr62n0yS9wcS0pXvJKq5hYp8gron3w0bTop83rmdVSgEmBToHOBPi4VDvtZV1uzT6+vXBzdbt9CcrPYIm+Rs0yQtRVWRbDiu2LijeMSjecSjesZi8Y8HBC3XWRtRpq1Ad+RdVaQba7Z/C9k/N70EFzv4oroGgtjEf844FG8czvlchhDiZqqaiQjmbEwSEhPDS7NmMGTWK4PBwvvj0U8aMHg1ASkoKiT16sH7NGvr07s2KlSsZPW4chw8cwM/P/JfMxwsW8PSzz3IkPR1bW1uefuYZfl++nO1btliucettt1FSWsqyH38E4IoBA+jRvTtvvfkmACaTiejYWO695x4enzat2XMvKyvDNzCQvGPHcHV1PZtlaFcMBgNarVQmE0JYD4lbQghrI3FLCGFtJG6JC9mMn/ezJCkHO62aFVN7E+Bmf/o3nWeKovDUshSWJJ3YORDsbs/dl4UyKtEf2zNIbtz+VRIbDxczbVAEd10WVu9a41fexOHydGb1eparw0Y2foLaatRpK82JjPT1qDA/IlQcPDB2Ho8p4UYUr5hTlpZCX4k640/Uh1ajyvoHVdkRVEZ9g2HGLhMwDH+1xfd4tiR2CWFdmvu8/ozTwUajkUXff09lZSV9e/dm+44d1NbWMmjgQMuY2NhYQkJC2LR5MwD/btpEfOfOloQGwJAhQygrK2Pvvn2WMSef4/iY4+fQ6/Vs37Gj3hi1Ws3AgQMtY5qi0+koKyuzfJWXl5/p7bdrqQcPtvUUhBCiRSRuCSGsjcQtIYS1kbglLlQbDxVZEgU6g4m31x1u4xk17pN/sliSlINaBbf2CsLLyYYjJTU882sqw+Zt4ustR9EZjM0+X1GVnk3pxQCM6Fi/aklaWRqHy9OxUdswILBf/TeajKgy/kL7+8PYvpeIzbJ7UaevQ4WCKfRyaq95H/092zEOfM68u+JUCQ0AWydMHUZgGP4atXf8hf6RQ+imJqGf8Bu1136MYeAsDJc+iuHSR5p9b61JYpcQ7VOLU5W7d++m/+DB1NTU4OzszKJvv6Vjx44kJSdja2uLu7t7vfF+vr6Wvhq5ubkNykP51X1vGZOX1+iYsrIyqqurKS4pwWg0NjomNTX1lHN/9fXXmfPyyw2O70xOxsnJicT4eFIPHqS6pgYXZ2dCQ0LYU5dsCQkKwqQoHD12DICETp04lJFBZWUljo6OREVEkLxnDwBBAQGoNRqyjhwBoHNcHFlHj1JWXo6DvT2xHTqwMzkZgAA/P+zs7EjPzASgY0wM2Tk5lJSVYWdrS+eOHdmelGS+Rx8fnJycOJSeDkBsdDT5BQUUlZSg1WpJjI9nR1ISJkXB28sLd1dXDh42/2UeHRlJSUkJBUVFqNVqunXpQlJyMgajEU8PD7y9vCyBvra2lqwjR8grKACgR9euJO/Zg762Fnc3N/z9/Nhft9bhoaHU1NSQk5cHQNeEBPanplKj0+Hq4kJwUBB79+8HIDQ4GIPBwLG6eoZd4uM5mJZGVXU1zk5OhIeGsrtuvYMDAwE4Urfe8R07kp6ZSUVlJY4ODkRHRbFr924AAv390Wq1ZNatd6e4OI7Urbe9nR1xMTGW9fb39cXe3t6y3nExMeTk5lJSWoqtjQ0JnTuzbedOAHy9vXF2drasd0x0NAWFhRQVF6PVaPh/9u46PKoz7eP494xGJ+5CAkkIBAhSrBQolHq37u7u7Va2upWtbt233r67dRcoLsUdQhJCIMQ9E8/IOef9Y9KBNNASCoQJ9+e65go588yZe06HXw9zz3me7KFDWbN+PZqmERkeTmhoKFu2bvUc79RU7E1N1NbVYVAURmRns27jRtxuN+GhoURFRpLfebz7p6TQ2tpKVY1nca+R2dnk5ObicDoJtdmIi40ld6fj7XA4qOj8+zJ86FDyCwpo7+jAFhxMUkICOZ3HOykxEU1VKavwXDY6NCuLwm3baGtrIzAwkP79+rFh0ybPezY+HoOiUFJW5nnPDhpEcUkJzS0t+Pv5kZGWxrrO4x0XG4vFbGZ7SYnnPTtwIOUVFTQ2NWG1Whk8cCBr1nsWAYuJjibA359t27d73rPp6VTX1NBgt2M2mxmWlcXqdevQdZ2oyEhswcEUdr5n0wcMoL6hgbr6eoxGI8OHDmXthg2oqkpEeDjhYWEUFBYCMCA1labmZmpqa1EUhZHZ2azPycHlchEWGkp0VBT5BQUApPbrR1t7O1Wd79kRw4axKT8fh8NBiM1GfFwcufn5APRLSsLpcnnn4JSM2PGebWlpOagyQtM08gsKJCMkIyQjJCMA3ziPcKuqZASSEZIRkhG+dB7R0trqrV8yQjLiYMkIe0sbd33t+btxeGooi7fZ+WZ9FUfGw+ShqQdNRqyqdPHcilYALhzsz3GxrVw7fhgf/LqVzzbaqWhy8MgvG3lm7kr6BYYzMCaIwXE2AlwNJAUbGTIwvUtGZGVl8Z+Za1F1SAu3EGJysWptvjcjPsv50vPf338wQeYg1m3ciNJWS//KHwktnYWxdcf6t67AOCqjJ1EdfwxZ44/zZMTG3L9+HmGIo6wdMCUwNLszIwqrDnhGVFZX097RIRlxiGaEnEccPOcRe/pvDV3fs0mlejz9lNPppKSkhMamJr765hvef/99Zk6fzroNG7j62mtpqq/vMv6IyZOZPGkSjz/6KNffeCPFJSX88O233vvb2toIj47m26++4thjjmHI8OFcfOGF3HXnnd4x02fM4NQzzqChM3z6p6czb/Zsxo0d6x3zj/vvZ+GiRSycN2+3tTscDhwOh/f35uZmBgwcKNNP/c7mLVvISEvr7TKEEGKPSW4JIXyN5JYQwtdIbomD0VOzCnl3SQlxNis/XDuah37czA851YxLCeX9C7NR/uwqgwMgt7KZ899fQ5tL49xR8Tx8fHqXuhxulZeWzuezsifQDK046ybirJ0GumctCoMCEYEWXKqG063hcGuoO32Sd9uUVK49ouvUU6dNP4vS1lIeH/soxyYdDZqK+eMTMFR5PjzVrSFoA/+GmnUGesJoUPZ+XY+DnWSXEL5lT6ef6vGVGhaLhQEDBgAwcsQIVq1axSuvvcaZZ5yB0+nEbrd3uVqjqrraO91UTEwMK1et6rK/37qT3jHR0VR3btt5jM1mw9/fH6PRiNFo3OWYnae12hWr1YrVau3pSz7kJCcl9XYJQgjRI5JbQghfI7klhPA1klviYLOxopn3l3q+sf/wCRkEWU3cNjWVGXk1LC2ys2BLPZPTI3q1xpoWB9d9upE2l8b41FDuPzatW6NlZul0vqp+Et3oQgGskfOJiM4nqv0CSivjqW9zUdPSfY0KgMhAM6f8bmH0PHs+pa2lWI1WJsZNAMCw4RMMVRvQrTbcxz2H1v8oMB0an49JdgnRN/3lVqymaTicTkaOGIHZbGbuTldKbN68mZKSEsaOGQPAuLFj2ZiT06UhMXvOHGw2G4MyM71j5v7uaovZnQuNg6epMnLEiC5jNE1j3rx53jHir/nt8jUhhPAVkltCCF8juSWE8DWSW+Jg4lI17vs+D02Hk7KiObKzeZEY6s/FYxIBeHpWIW5N67UaO1wqN3y2kYomBynh/rx4RhbmnRYDV3WVF9e/zMMrH8WluTgyfjJPjnucKL8oWrRKtln/zclHLmLGjcP4+spR/HjtaGbdOJYFt45n2Z0TWHvPRBbedjixNiu1HXWsrF7FF4Vf8dL6VwCYGHcEAaYA6LBjWuiZil2dcCdaxgmHTEMDJLuE6Kt6dKXG/Q89xLFHH01SUhItzc188vnnLFi4kO+//ZaQkBAuvfhi7rr3XsLCwrDZbNx+552MGzvW22yYdtRRDMrM5PKrruJfjz1GVVUV/3zkEa65+mrvFRRXXnEFr7/5Jv+4/34uuegi5s2fz5dffcU3X37prePmG2/kymuuYeTIkYweNYqXX32V1rY2Lr7wwn14aIQQQgghhBBCCCHEX2Vvd/HBslLaXd0XwjYoCoclhzBxQHiXD/3/yHtLS8iraiXU38Q/ju06tdC1RyTz5doKttS28eXaSs4ZGb9PXsOe0nWdDeXNvDS/iHVlzYT4mXjz3KGE+Ju9Y1pcrdy/7EEWVf4KwBWZl3FN1lUYFAPjYsby4vpX+HrbN3y57WsWVf7K5YMuQ0GhydlEo7ORJmcTTc4mqttr2N5STIurpVsdxyUfC4Bx8XMo7fVoERmowy85MAdBCCH2sx41NWpqarji6quprKwkxGZjyJAhfP/tt0ybOhWAZ556CoPBwHkXXojD4eDoo47ixRde8D7eaDTy1RdfcPOttzJ56lQCAwK48IILeOj++71jUlNS+PqLL7jrnnt45bXXSEhI4PVXX+XoadO8Y84680xqa2t5pLMxkj1sGN99/fWfTj8l9kxSQkJvlyCEED0iuSWE8DWSW0IIXyO5dWhasq2BZ2dvpc2p4lQ1XKqGS9Vxqhomg8LjJw1kWmbUn+7nwR/ymZFXu9v731lSQniAmZOGRHPqsFgGxwbtdj2Moro2Xp5fBMC9R6cREWjpcr/Nz8wNk1J4fMYWXpq3jROzogmy9nj29R5r7nDz3cYqPltdTl6VZ1Fwk0HhpbOySIkI8I4rbSnl9sV/Z2vTNqwGKw8cdh/HJR/jvT/IHMR9o+7h2KSjeWzVE5S2lvLE6qf+8LkNGIgPjCcluB8pwf0YHD6IyXETUWrzMa5+DwD31H+C0fyH++mLJLuE6Jt6vFB4X7KnC48caiqrq4mNju7tMoQQYo9JbgkhfI3klhDC10huHXpUTeeE15dTVN++2zEhfia+v3Y0McG7n85oZl4NN36eg1GBi8cmYjJ0bVY0O1Rm5tVQ1+rybkuPCuDkoTEkhfl3299Hy8tYVdLIEf3DePv8YbtsfjhVjRPfWEa5czXpAzZxZuYELsw4f7c1Ot0a2+vb2VbXRlF9Gw3tblydi3L/dvutkRPsZyLYaiLYz4TNz0SgxcjK4kZ+yqmmw+2Z7spiVDhucDQXj0lgaLzn86aK1go+3Pwx3277HqfmJMovimcPf4qs8MG7ravD3cG7ee+ztnYdQeYgQiw2bN5bMGHWcFKC+5EUlIjV+Lv/BrqO+bNzMBQvQk07Dvdp7+72efoyyS4hfMt+Wyhc9H1l5eUS+EIInyK5JYTwNZJbQghfI7l16JmRW0NRfTshfiZeOisLP5MBs9GA2ahgNhq48+tcNlY0c9/3+fznvKG7bC40dbj4588FAFx5eDK3T+2/y+d64Lg0fi1s4Jv1lczKr2WLvZSX1/2E5g5CbR2A7g7rMt7fbODhEzJ2+Zzt7na+L/oRQ9L/4e+soNQJL6xfhUH3J9s2jTJ7B+WNHZQ1dlDU2cgos3eg7YOv/KZFBnD2yHhOGRZDaOd0UyUtJbyX9yE/bv8JVfdMvzUqaiSPjfknUf5/fJWLn8mP64dcu1e1GAqmYyhehG604p7y0F7toy+Q7BKib5KmhhBCCCGEEEIIIcRB7JUFRawpaeS50wd3WZthf9F1nTd/3Q7ARWMSGJcS1m3MU6dkctp/VrKwsJ7P1lTscu2KZ2dvpabFSUq4PzdM6rfb5zMZDExOjyA1tpXAxC/5pWQGGjvW3zBrEQRoGQSqAwnUMzhveBqRwZ61KTRdRdVVWlwtfLvte77a+g1NriYADHoAztYkTEH5/Hv9M7QX16O2DdhlDUFWI6kRAaRGBBAZaMZoVGmlFLu6jTr3Vmpd2+hQW1Ewgm5E77xpmhF/kz8DwqJIDYvAZQnllzLPlRS/Vi5mRvFMNDxXcIyJPozLMy9jVNTI3U6vtU+42jHNexgAdfS1ELr7Yy+EEL5Ipp+S6ae6cTqdWCyWPx8ohBAHCcktIYSvkdwSQvgaya3e838rynhkuudqhxsn9eOmyan7/Tnnbq7l2k83EmAxMvfmcd6rDn7vvaUlPDmzkACzge+uGd1luqjl2+1c9OFaAD66eDhj+oXu9vm2NBbyXt4HzCyZ5W0AjIwcgUtzsakh13uFw55KCkrk/PRz6WeeyGUf5WKK/R/mkHWg+pPY9nf6BfcjPtSPfmH+pEb4kxoRQFSQhVZ3K+/kvsfy6hUUNm7Frbt79Ly7c0TsBC4fdCnDIobuk/39GeOSFzAteho9KA7nFQvBEvDnD+qjJLuE8C0y/ZTYa1u3byczPb23yxBCiD0muSWE8DWSW0IIXyO51TsWFdbz+IwC7+8fryjj8vFJBFr238c5uq7z+iLPVRrnj4rfbUMD4JKxiczOr2VFcSP3fJfHhxcNx2hQcLhVHvghH4BzRsbttqFR21HHU2ueYW7ZPO+2iXETuDzzMoZGDAGg1dXK2tp1rKxZxaqa1eQ15HsbHzszYGB4ZDbnZ5zHxLgJGBUjADNusNHiGM4TG+8gpyEHQ9x7PDL1bUIsIV0ev7hyCY+veoKq9mrvtlBLKIPDMhkUNohB4YOItIbj1t04VRcuzYVLd+NSnbS522l0NtLkbKLR2Yjd2Uijo5GYgGguSD+PzLDMPz7oDdswz7wXpXItemAUBMWhB8ehB8WiB8VC8I7fCYgEg3H3+2oqw7jsZQDcR95/SDc0QLJLiL5Kmhqim9bW1t4uQQghekRySwjhayS3hBC+RnLrwCusaeWWL3NQdTh1WAxrSpvYXt/O52squHRs0n573qVFdtaVNWM1Gbhs3K6fp83dxq8VixkTM5onTs7k5LdWsrK4kfeXlXDF+GReW7Cdovp2ooIs3HnUrtfRqG6v5tr5N1LcUoyCwtSEKVyWeQmZYQO7jAs0BzIh7nAmxB0OQIfagVtTMSoGDIoBo2LEqBh3O51TYqg/4M9zIU9z6ZwrKG4p4a4l9/LKxBcxG8w0O5t5bv2LfF/0g2d8YCLXDbmGYeFDiA2I3b/TROkahjXvYZr/OIq7AwDF0QT1hbt/iGKEoBj0oDiwBoOzBZzNnsc5mlGcLQBoCWPQMk/df7X7CMkuIfomaWqIbgICDu0uvhDC90huCSF8jeSWEMLXSG4dWPVtTq75dAMtDpXDkkN49MSBfL2+kgd/3Mz7S0s5/7AELEbDfnnu367SOGtEHJFB3aftcapObll0O2tq1xJqCeXGoddxz7RRPPjTFp6fu42YYCtvLykB4KHj07H5db/So7Ktkmvn30hpaymxAbE8f/gzpIfu2bfp/Yx+8AcXKuxOhF8Ez0/4N1fMvYpVNat5YvXTTImfzL9WP0VNRw0KCueln8P1WdfiZ/Lr+RP0lL0Y8/TbMZQsBkBLnoB74r3gakNpqURpqUBproDmys7fK6G1GkVXobkcpbl8t7vWLcG4pz0O+7Mh4yMku4Tom2RNDVlToxuny4XFvP8XHhNCiH1FcksI4Wskt4QQvkZy68BxqhqXf7yOFcWNJIb68fkVIwkPsOBwqxz18jJqWpw8eXImp2XH7vPnXlPayLnvrcFkUJh541jiQ7p+uK/rOg+vfJQft//UZfvgsEG4a05lVcGOKZ2OyYzk5bOGdHuO0pYyrltwAxVtlSQEJvDGpFeIC4zb56+FjkYMm77AuOkr9JhhuI98EMz+LK5cwq2L7ugyhVVyUBIPHnY/wyOz930dv6frGNZ9hGneIyiuNnSzP+7JD6ANvxiUP2lUaW5PY6Oz0YGzGSzB6NZgsNrAGoxusYFfCBjl7ytIdgnha2RNDbHXNuTkMGr48N4uQwgh9pjklhDC10huCSF8jeTWgaHrOg/9uJkVxY0EWY28ee5QwgM8V0tYTUYuGZvIs7O38p/FxZwyLAbDPv4m/hudV2mcMiymW0MD4L28D/hx+08YFSP/PvxpiltKeDPnP2xqyEUx5WFLHENzxdEEmUK4/7juV14UNxdz3YIbqWqvJjkoidcnvUpMQPS+ewG6jlK5DuO6DzHkfuOd0omKNSjlq3Cd8jaHx47njuG38czaf2PAwAUZ53FN1lWeK0D2F1c7StkKDMWLMGydg6FmEwBa4lhcxz0PYSl7th+DCYLj0YPjOWS/odxDkl1C9E3S1BBCCCGEEEIIIYQ4CHywrJSv1lViUOD50weTFhXY5f7zRsXz5qLtFNa2MWdzHdMGRu6z586tbGZeQT0GBa4+PLnb/bNKZ/NazhsA/H347RwRNwGAY5KO5uUNr3qu3gheRlDgerJCRvB9aQEZIemkh6QRGxBLUXMR1y24idqOWlKDU3h90itE+v9B/Y0lKM0VKM5m+G29CEcjODxrRmAwea5GMJg9P1UXhvzvMFRt8O5Ci8xEG3gSxtXvYqjeiOWj43Cf+DLnpJ1Fv6BkIvzC93jaKy9XO7TVorRWo7TWQGsNirsD3WjuWo/BgmLfiqFoIUrZChTV4d2FbvJDnXgv6qgr/vzqDCGEEN1IU0N0kxC3Hy77FEKI/UhySwjhayS3hBC+RnJr/3OpGi8vKALgnqPTmJQW0W1MkNXEeaMSeGtxMf/5tZijMiL22ULWbywqBuD4wdGkRHRdh2BjfQ4PLX8EgPPSzuHMAWd474v0i+Cfox/ktNRTeHrtv9ls30xO82JychZ7xwSbg9F0jVZ3K2khA3ht4suE+4XvupDGEkzzHsW4+Ye9eh260Yo28CTU7IvQE0aDoqAOOQfzd1djqFiD6cuLUcffyrjDbwfDHyzO4Xag1OSiVK7DULUOpXI9SlOpZ0HuvakrKBat30TPLWUyBEbt1X5Ez0h2CdE3SVNDdGMw7sWKW0II0Yskt4QQvkZySwjhayS39r9VJY20OFQiAs1cNCahy31PrXmWX0pmcnjsOMakTsayXGdtWRMrixsZ3S/0Lz93YW0rM3JrALhmQterNCrbKrnj17/j0BwcETuBW7Nv3uU+hkdm89FR77GqejX59s1sbixgS+MWtjZto9nVDEBGaAavTXyJUOsuana2Ylz2CsYVb6CoDnTFACHJ3vUidEvnT2sQoKBobtBcoLpBc4KmoseNQM06CwJ+1xCyJeA69ytMcx/GuPYDTEuex1C5FvfYm1A67NBeh9JeD231KG11KHX5KDV5KJprl69VN1ohMAo9MBo9MApMfp71LlSnpy7VBaoT3T8crd8R6P0mooenycLdvUCyS4i+SZoaopuS0lKiI/fdJaxCCLG/SW4JIXyN5JYQwtdIbu1/8wrqAJicFtFlrYxGZyNfbf0aVVf5uXgGPxfPIDA9AIN9EM8uKef/ks7GZNi7j3faXSqfri7n7cUl6MBRGREMjAny3t/qauW2X++kzlFPekgaj499BKOy+w+JjYqRMTGjGRMz2rvNpbnY1lREWWsZY6JHE2juOqUWuoZh01eYFvzLs/g1oCUfgXvqP9GjBu3V69olkxX30U+gxY/C9MtdGLbNxbJt7h8+RPcPQ4/JRovNRo8Zhh6Rhh4Y7VmUWxoUPkGyS4i+SZoaQgghhBBCCCGEEL1s7mZPU+PI9K5XGSys+BVVV0kOSmJC7OHMKp1DTUcN5tBVFLKK4374P1464lkGh3dtAGi6vtuFxFudbv67spz3lpZQ1+q5GiE+xMqdRw3wjiluLuaepfdR0LiFCGs4z094tntDYg+YDWYyQtPJ2MXaFUrxr5gW/AtDxRoA9JB+uKc8iJZ23H5rGmhZZ+KKGoRp5j0orbXoAeHo/hHgH44eEO75GZqCFjscbAnSvBBCiIOQNDVEN1mZmb1dghBC9IjklhDC10huCSF8jeTW/lVU10ZRfTtmg8KE/mFd7ptbNg+AY5OO4Zqsq7gt+xbW1q7jofmfUeZegZ06rltwM+cnPEJjYzT51S3kV7VS1+okOthKfIiVhBA/EkL8iA/1o7bFyYfLS7G3uwFIDPXjmgnJnJodi8XoWbT6l5KZPLbqCdrcbYRZw3huwrPEBsR2L1zXwdGI0ljiWW+iqQza6tDjR6L1m+iZlmkXlNJlmBY9g6HEs+6Gbg5EHX8L6qirwGTdR0d19/ToLFwXfL/fn0f0PskuIfomaWqIbkrKykgfMODPBwohxEFCcksI4Wskt4QQvkZya/+at8VzlcZh/UIIsu74qKbN3cbSymUATE04EgCDYmBk1AiePiKNU99ZTEDSO7QGFPNm4f20b78GzRntfXxlk4PKJgerS7ovbp0S7s+1R/TjpCHRmDubGQ7VwXPrXuDLrV8DMDJyBI+PfYQo/66LWivb5mJa+CRKwzYUZ8suX5NuDkQbcBRa+glo/aeCJQilbCWmX5/FsH2BZ4zRgjbsAtzjboGg6F3uR4i/QrJLiL5Jmhqim6bm5t4uQQghekRySwjhayS3hBC+RnJr/5pfUA/AkWldp55aXLkUh+YgMTCRtJC0LvcNig3m2IGJzMi/jOCUtzFYywhPe5eLEh9nXEIasTYrVc1OyuwdlDd2UNbo+elwa5yRHccJWdEYDTumVippKeHupfex2b4ZgMszL+XqwVd2W6/DkP8Dph+u9yyI3UkPiEQPSUK3JYIlEMO2+SgtFRjzvsOY9x260YoekYahOscz3mBGG3oe7nE3eaZ4EmI/kewSom+Spoboxt9v15eHCiHEwUpySwjhayS3hBC+RnJr/2lxuFmx3Q50X09jTplnIeupCUei7GJth+dOH4S9LR2jaTzXLriBwqZCfqh7lFOGvE5sYAixNj+yE2ze8XaHnTx7PnbHWj4vtNPgsGN32rE7GllatZRWdxuhllAeHfMw42PHdXs+Q84XmH6+FUXXUAedijr+NnRbApgDug7UNZTKdRg2/+S52behVOegK0a0IWfjHn8rhCT9tQMnxB6Q7BKib1I6Wlr03i6itzQ1NREdH091eTk2m+3PH3CIUFUVo9HY22UIIcQek9wSQvgayS0hhK+R3Np/fsmt4aYvckgJ92fGDWO92x2qg6O/P542dxvvT3mbIRFD/nA/dR11XD3/erY3bychMIH/HPk6AaYAVtesYUX1KlbWrKSgccsf7mN4RDaPj32UmIDuU0EZ1n2M6Ze7UdBRh56L+5hnwLAH7wldR6nNR6lcg5Y4DsJS//wxQuwjkl1C+JY9/bxertQQ3azdsIFRw4f3dhlCCLHHJLeEEL5GcksI4Wskt/afuQWe9TR+f5XGiuqVtLnbiPaPYnD44F0+Vqlaj1K2Am3wmUT4RfD6pJe5at51lLWWcc4vF9DqakVD6/KY5KBkov2jCLOGEmoNJdTi+RkbEMOE2MO7TTcFYFz1NqY5DwKgjrgM91GPgmLYsxeoKOhRmehRsmCzOPAku4Tom6SpIYQQQgghhBBCCNELNF1n/pZdNzXmlM3zbI+fjGEXDQRD4UxM312D4u5AX/wc7sPvIDr7It6Y9ApXzruWqvYqAJKDkjgs+jBGR41iVNRIwv3Ce1SjcelLmBY+CYB7zPWok+6DXUyFJYQQQhwo0tQQ3cTFxPR2CUII0SOSW0IIXyO5JYTwNZJb+8fGimbqWl0EWoyMSg7xbndrbuaXLwBgasKUbo8zbPrKs7aF5ka3BKG0N2CefT/amvdImHw/H0x9h3V16xkSPmSXU0n9KV1H2b4A46q3MW6d7anp8DtQD79dGhrCp0h2CdE3SVNDdGO1Wnu7BCGE6BHJLSGEr5HcEkL4Gsmt/WPeZs9VGkcMCMdi3HE1xtradTQ6GwmxhDA8MrvLYwxrPsA06x+etS0GnY772GcwbPwM0+JnMdQXYvj6MuKSDidq4t3opqCeFeRsxZDzBcY172KoKwBAR0GdfB/qmOv/2osVohdIdgnRN0lTQ3RTVFxMRHjPLkcVQojeJLklhPA1kltCCF8jubV/zPNOPdX12M4pmwvA5PhJO9a40HWMy17BtPAJANQRl+I+6jFQDGgjLsE5+DSMy17FuPItDCWLsfz3FM/DLEHogdEQFIMeGI0eEAFGK5isYLSAwez5c2MJxo2fojiaPI8zB6IOPQdtxGXo4QMOxOEQYp+T7BKib5KmhhBCCCGEEEIIIcQBVt3sIKeiBQWYNGDHehqarjGvfD6w09RTuo5x/mOYVrwOgHv8ragT/t51KiirDXXSvajDL8K08CkMBT+huNpRnC0ozhZo2LpHdWlh/VFHXoaWdTZYg/fJaxVCCCH2JWlqiG4GZWT0dglCCNEjkltCCF8juSWE8DWSW/ve/C31AAyNDyYyyOLdvql+E9XtNQSaAhgTfRhA14bGkQ+hjr5m9zu2JeI+8WXQXwJnC0prFbTWoLRUobRWQ3s9uB2guVDcTlCdoDnBYEbLPBktdQrsYmFyIXyRZJcQfZM0NUQ3FZWVDOjfv7fLEEKIPSa5JYTwNZJbQghfI7m1780r+G3qqYgu22d3Tj11RNwRWIwWaCzFuPItAFzHPos27Pw9ewJFAWswujUYwtPQ913pQvgMyS4h+qYetd6ffvZZJkyaRGRsLEkpKZx17rls3ry5y5ijjzsOv6CgLrcbb765y5jikhJOPeMMwqKiSEpJ4d777sPtdncZM3/BAsZNmIAtPJzBw4bx4ccfd6vnjTffJGPwYEIiIph45JGsWLmyJy9H7Ia9qam3SxBCiB6R3BJC+BrJLSGEr5Hc2recbo3FWz1XakzZqamh6zpzyzxTT01JOBIA46q3UHQVLfmIPW9oCCEAyS4h+qoeNTUWLlrENVdfzYI5c/jx++9xuVyceMoptLa2dhl3+aWXUlRY6L3967HHvPepqsppZ5yB0+lk3uzZvP3WW3z08cf8c6cx24qKOO3MM5k8aRLLFy/mpuuv57obbmDmrFneMZ9/8QV33Xsv9917L0sXLWLokCH87dRTqa6u3ttjITpZLZY/HySEEAcRyS0hhK+R3BJC+BrJrX1r+XY7bS6N6GALg2KDvNu3NG6htLUUq8HK4bHjoL0e4/r/A8A99obeKlcInyXZJUTf1KPpp77/5psuv//njTdISk1l9Zo1TDziCO/2gIAAYmNidrmPWbNnk5uXx0/ff09MTAzZw4bx0AMPcN+DD/LAP/6BxWLh7XfeIaVfP5564gkAMjMzWbxkCS+98gpHT5sGwEuvvMLll17KJRddBMArL73E9Bkz+OCjj/j7HXf05GWJ38kaNKi3SxBCiB6R3BJC+BrJLSGEr5Hc2re8U0+lRaDstNj3nLJ5AIyLHUuAKQDjirdQXO1o0Vno/Sb1RqlC+DTJLiH6pr+08lNT5yVc4WFhXbZ/8umnJCQnM3L0aO5/6CHa2tq89y1dtowhWVnE7NT0mDZtGk1NTWzKzfWOmTplSpd9Tps2jWXLlwPgdDpZvWZNlzEGg4EpU6Z4x+yKw+GgqanJe2tubt7LV963rV63rrdLEEKIHpHcEkL4GsktIYSvkdzad4rq2vhpk2eWick7TT1V217Ld0U/ADA1YQq42jGufgcAdcz1njUyhBA9ItklRN+01wuFa5rGnXffzfjx48nKyvJuP+fss+mXnExcbCwbcnK4/4EHKNi8mU//9z8AqqqqiI6O7rKvmM7fq6qqPD+rq3c5pqmpifb2dhrsdlRV3eWY36/xsbOnn32Wxzuv/tjZ2g0bCAwMJHvIEDZv2UJ7RwfBQUEkJyWR09loSUpIQNN1ysrLARg6eDBbt2+ntbWVgIAABqSmsiEnB4CEuDgMRiMlpaUAZGVmUlJWRlNzM/5+fgxMT2fthg0AxMXEYLVaKSouBmBQRgYVlZXYm5qwWixkDRrkDeCYqCgCAwPZWlQEwMC0NGpqa6m32zGZTGQPGcKadevQdJ3IiAhCbTa2bNsGQFr//tjtdmrr6zEYDIwYNox1GzbgVlXCw8KIjIhg85YtALhcLkpKS6murQVg1PDhbMjJwelyERoSQmxMDHmdxzklOZmOjg4qO6f9Gj50KHmbN9PhcGALDiYxIYFNeXkAJCcm4na7Ka+sBGDYkCFsKSykrb2doMBAUpKT2dh5vBPj4wEo7TzeQwYNoqi4mJbWVgL8/UkbMID1GzcCEB8bi8lkorjzeA/OzKS083j7Wa1kZmR4j3dsdDR+fn7e452ZkUFlVRX2xkYsZjNDs7JYtXYtANGRkQQFBXmPd0ZaGrV1ddQ3NGAyGskeOpQ169ejaRqR4eGEhoayZetWz/FOTcXe1ERtXR0GRWFEdjbrNm7E7XYTHhpKVGQk+Z3Hu39KCq2trVTV1AAwMjubnNxcHE4noTYbcbGx5O50vB0OBxWdf1eGDx1KfkEB7R0d2IKDSUpIIKfzeCclJqKpKmUVFZ73bFYWhdu20dbWRmBgIP379WPDpk2e92x8PAZFoaSszPOeHTSI4pISmlta8PfzIyMtjXWdxzsuNhaL2cz2khLPe3bgQMorKmhsasJqtTJ44EDWrF/vec9GRxPg78+27ds979n0dKpramiw2zGbzQzLymL1unXouk5UZCS24GAKO9+z6QMGUN/QQF19PUajkeFDh7J2wwZUVSUiPJzwsDAKCgsBGJCaSlNzMzW1tSiKwsjsbNbn5OByuQgLDSU6Kor8ggIAUvv1o629narO9+yIYcPYlJ+Pw+EgxGYjPi6O3Px8APolJeF0uajofM9KRux4z7a0tBxUGaFpGvkFBZIRkhGSEZIRgG+cRwCSEUhGSEZIRvjSeYSqqt76JSP2PiN+Xp7Dk0tbaXLqJIVYCGwpYdXaUpLSE7hyzjVUOaqINEcyPnIcpdOfY0BbHe7AeMrDxlLWefwlIyQjDsaMOFjPIxqbmli1dq3PZIScR0hGHOoZoes6e0LpaGnZs5G/c9MttzBj5kzmzJxJYkLCbsfNnTeP4086iZz16xnQvz/X33gjxSUl/PDtt94xbW1thEdH8+1XX3HsMccwZPhwLr7wQu66807vmOkzZnDqGWfQ0BlA/dPTmTd7NuPGjvWO+cf997Nw0SIWzpu3y1ocDgcOh8P7e3NzMwMGDqS6vBybzbY3h6FPKi0r+8P/pkIIcbCR3BJC+BrJLSGEr5Hc+utWbLdz7acbaHGoDIoJ4u3zhxEZZMHuaOTaBdezpbGQGP9o3pz8OokBsVjemYhiL8J11KNoI6/o7fKF8EmSXUL4lqamJqLj4//08/q9mn7q1ttv56fp05nx009/GgxjRo8GYGtnNygmJqbbYt6/dSh/m5IqJjp6l2NsNhv+/v5ERkRgNBp3OSZmN2t5AFitVmw2m/cWHBy8B6/20BMYGNjbJQghRI9IbgkhfI3klhDC1/RGbjW2u7jxs438kltzwJ97X5uzuZYr/rueFofK6OQQPrp4OJFBFpqdzdy48Ga2NBYS4RfBa5NeITEoAUPBTyj2InT/MLQh5/V2+UL4LDnnEqJv6lFTQ9d1br39dr77/ntm/PgjqSkpf/qYdZ2XfcXGxgIwbuxYNubkdGlIzJ4zB5vNxqDMTO+Yub+72mL2nDmMHTMGAIvFwsgRI7qM0TSNefPmeceIvffbpUtCCOErJLeEEL5GcksI4Wt6I7e+3VDFzPxa7vshn6YO117vx625eXbtc/y34BNUXd2HFe6Zb9ZVcuNnG3G4NaZmRPD2+cMI9jPR4mrlxoW3kGfPJ8waxuuTXqFfcDLoOsZlrwKgjrgMLAEHvGYh+go55xKib+rRmhq33HYbn37+OZ9/8glBwcFUds6RFdJ5BUXh1q18+tlnHHfssYSHh7Nx40b+fs89HDFhAkOHDAFg2lFHMSgzk8uvuop/PfYYVVVV/PORR7jm6quxWq0AXHnFFbz+5pv84/77ueSii5g3fz5ffvUV33z5pbeWm2+8kSuvuYaRI0cyetQoXn71VVrb2rj4wgv31bERQgghhBBCCCFEL1lb2gRAU4eb95eWcvORqXu1n2VVy/lky2cAzCqdzSOjHyIxKHGf1bkrrU4368uaWbCljneXeuZSP3VYDI//bSAmg4E2dxu3LLqNnIZNhFhsvDbxJfrbPK9PKVmMoWo9usnP09QQQgghRBc9WlPDLyhol9vfeuMNLr7wQkpKS7nsiivYlJtLa2sriYmJnPK3v3HPXXd1mQNre3ExN996KwsWLiQwIIALL7iAxx55BJNpR49l/oIF3HXPPeTm5ZGQkMC9d9/drWHx+htv8NyLL1JVVUX2sGH8+5lnvNNd7Yk9naPrUNPS0kLQbv5bCyHEwUhySwjhayS3hBC+pjdya+rLSymzdwAQaDEy+6ZxhAWYe7yfF9e/zEeb/8/7u7/Rn9uyb+G01FNQFOUv19nhUiluaGdTRQtryppYW9rI5upWtJ0+bbl0bCKXTghmbd0aVtesYVnVcsrbKggyB/HGpFfIDMv0jjV/cQGGbXNRR1yKe9q//nJ9QhzK5JxLCN+yp5/X7/VC4X2BNDV2bVtR0R5NLSaEEAcLyS0hhK+R3BJC+JoDnVs1LQ6OeH4JCtA/MoDC2jauPjyZO47qv9vH6LrOqpJGtte3d9n+XsmdVDoKmRxxAdva1lHcvhGAtIDDODHmBoJMYd6xu2xx/G5jfauLovo2tte3s72+ncomB7v6YCUuVCMhbhv+IYVUu/Iobyvvcn+wOZiXj3ieIRFDdjxVdQ6WD45GVww4r/wVQvvt9vUKIf6cnHMJ4Vv29PP6Hk0/JQ4N9XY7e3dRrxBC9A7JLSGEr5HcEkL4mgOdW+s6p55Kjw7k1iNTuf6zjXy0opRLxyUSEWjZ5WM+WlHG4zO2dN1oaCcoYyuKAj8u7YfuzsIc/ivWqBlsaVvJ8wU34Go4HM0Viu4ORleDPD/dgYBxj+sNthpJiwpkcLyCKTiPEtdy1tatJF9zQWNnKRjIDBvIyMgRjIgazqiokQSZd/oGubsD48KnANAGniQNDSH2ATnnEqJvkqaG6GbnacCEEMIXSG4JIXyN5JYQwtcc6Nxa09nUGJFoY2pGBEPjg9lQ3sx/Fhdzz9Fp3cYv2dbAk794Ghqjk0MItHoaEnZlLYWKjlWPYaT329qn0KYexnblXdpNJVijZu2yBrMeikWPwqJHYdWjsBKNRYvGZvEn0qYSFuQiMMCFn6UDF62sq13PjzWrUJt3LEaeEtyPyfGTGBU1kmERwwgyB+7yuZSqjZh+uglDbT66YkAdc8NeHjkhxM7knEuIvkn+ZotusocM+fNBQghxEJHcEkL4GsktIYSvOdC5ta7M09TITrChKAo3T07hqv9t4L8ry7l8XBLRwVbv2JKGdm79MgdVh1OGxvDUKZnetTL+vXYOhVvgxAGH84+Rw3Z6hmG4tGl8UfgV+fZ86jvqqXXUU99RT4OjAVVXcSl2XIqdVgq6F9jUeduFjJB0piZMYWriFO/i37ulqRhXvIZx0bMomgs9IAr38c+hxwztwdESQuyOnHMJ0TdJU0N0s2bdOkZkZ/d2GUIIscckt4QQvkZySwjhaw5kbrlUjQ3lzQAMT/TMpz1xQDgjEm2sKW3irV+Luf+4dABaHG6u+3QD9nY3w+KDefSkjC6Lf6+qWQXAYVEjuz2P2WDmvPRzum1XdRW7w05FWyWlLWWUtpRS0lpKSUsJpS2luDQ3NkswwebOmyUYmyWY5KBkpiRMJikoac9eqH075p9uxlC2wvO86cfjPuZpCIjY84MlhPhDcs4lRN8kTQ3RjaYfsmvHCyF8lOSWEMLXSG4JIXzNgcytzdWtdLg1bH4mUiMCAFAUhVuOTOXSj9fxyepyrhifRIzNyl3f5FJQ00ZUkIVXzh6C1bRjHQy7o5HNjZ6rLEbtoqmxO0bFSIRfBBF+EQwJz9q3L87RhFK5DkPpcowr3kBxtaJbgnAf9Rha1lmg7HKpciHEXpJzLiH6JmlqiG4iI+RbIUII3yK5JYTwNZJbQghfcyBza23pjqmnDDt9yD8uJZQx/UJYvr2Bu+f9h9TAIczerGA2KrxyVhYxO01JBbC6djUA/W2pRPjton5dx1A4E6UmF5zNKI4WcDZ7/6ybAyA0GT2kH3po5y0kGSy7XhejC02F1iqUxhKUmlwMFWtRKteg1G1BYceHrFriWFwnvAQhe3h1hxCiR+ScS4i+SZoaoptQm623SxBCiB6R3BJC+BrJLSGErzmQubWmtBGA4Qldn/O3qzUu+Xoum1yfsbE6DPg7j544mOGJId32s7LaM/XUqKhR3Z9EdWKaeQ/GDZ/0uD7dagO/UHS/UM9P/1DwCwN3B0pTGUpjCTSXoWjuXT8+JBktbjhaymS0rLPBYNzlOCHEXyfnXEL0TdLUEN1s2baNUcOH93YZQgixxyS3hBC+RnJLCOFrDmRu/bZI+G/raezssORQomPzaAYMlgaOHVnPadmxu9zPyhrPlRrd1tNoq8P87ZUYSpehKwa0QaehB0SCJQisweiWIM+fHc0ojdtR7NtRGotR7MUoHQ0ojibPNFKNxX/4OnSDCYLj0cP6o8UNR48biRY7HAIje3xMhBB7R865hOibpKkhhBBCCCGEEEKIg0Jdq5Pihg4AhiUEd7u/xdVKuymX32ZwUkIWA2d2G1ffUc/Wpq1A1/U0lJpczF9fitJYgm4JxnXyG+ipU/a8wI5GlLYaaLejdNiho/NnewMYzei2JPSQRHRbIgTFylUYQgghxH4gTQ3RTVr//r1dghBC9IjklhDC10huCSF8zYHKrd+u0kiLDMDmZ+52/6KKRbh1F+HWcOod9SyuXEJZazkJgfFdxq3qvEojPSSNUGsoAIYtv2D64QbP4tyhKbhO/wA9Ir1nBfqFoPt5prqS5YeFOPjJOZcQfZOhtwsQBx+73d7bJQghRI9IbgkhfI3klhDC1xyo3PIuEr6LqacAZpfOAeCU1L8xNnoMOjpfb/2m27gVNZ71NA7rXE/DuPx1TF9fhuJqRUuegPPCH3re0BBC+Bw55xKib5Kmhuimtr6+t0sQQogekdwSQvgayS0hhK85ULm1tvNKjRG7aGq0udtYXLkUgKMSpnLWgDMA+GbbdzhVZ5exvy0Sflj0KAybf8Y0/1EUdNTsi3Gd+V/wD9+fL0MIcZCQcy4h+iZpaohuDAZ5WwghfIvklhDC10huCSF8zYHILbemsaGzqZGd0L2psbhyCQ7NQUJgAgNDMzgibgIx/tHYnXZml83xjqtpr6G4pRgDBkaGZGCafb9n/6OvxX30E2DsPq2VEKJvknMuIfom+ZstuhkxbFhvlyCEED0iuSWE8DWSW0IIX3MgcqugupU2l0aQ1UhaVGC3+3+beuqohCkoioLJYOK01FMB+KLwK++4lZ1TTw0MyyB02RsoLRXoIf1QJ/wdFGW/vw4hxMFDzrmE6JukqSG6WbdhQ2+XIIQQPSK5JYTwNZJbQog/sqyogQ+Xl+JStd4uxetA5NZvU08Ni7dh+F3zocPdwaKKxQAclTjVu/3U1JMxKkbW1a1ns70A2GnqqYBkjKvfBsB19BNg9t/vr0EIcXCRcy4h+iZpaohu3Kra2yUIIUSPSG4JIXyN5JYQYne+21DFpR+v4/EZW7j1y004D5LGxoHIrd8WCR++i/U0llQtpV1tJzYglsFhg7zbI/0jmZpwJABfbPVcrbGyZjUAY7cuRtE11MyT0VOP3K+1CyEOTnLOJUTfJE0N0U14WFhvlyCEED0iuSWE8DWSW0KIXfl6XSV3fZOLpnt+n5Vfy82f5+B0935j40DklrepsYv1NLpMPaU6MC56GkPet6DrnNH/dAB+3j6dLY2FlLWWYUThsIpcdEsw7in/3O+1CyEOTnLOJUTfJE0N0U1kRERvlyCEED0iuSWE8DWSW0KI3/t8TTn3fpeHDpwzMo63zx+G1WRgbkEd13+2kQ6XyrKq5by28Q3sjsYDXt/+zq2GNhdF9e0ADPtdU8OhOlhYsQjwTD1lXP0epiUvYP7+OkxfXcIovzhSg1NoV9t5fNUTAAx2ugjUddwT74GgmP1auxDi4CXnXEL0TdLUEN1s3rKlt0sQQogekdwSQvgayS0hxM7+u7KM+3/YjA5cODqBf56QwcQB4bx13lD8zQYWFtZz0Wdfc8ui23k3730umHURq2vWHNAa93dure9cTyMl3J+wAHOX+5ZVLafV3Ua0fxRDQjIwrn7He59x6yys70/lLP8UADbUbwRgTFsrWmw22vCL92vdQoiDm5xzCdE3SVNDCCGEEEIIIYToJR8sK+WfP3sWuL50bCL3H5uG0rlI9riUMN4+fxgBAXYKja/j1t1YDBaq2qu5dv4NvJnzH9yauzfL32fWdE49NWIX62nMLpsLwNSEKZgKfkZpLkcPiMR50XS02OEojiZOXf4RfuxYXHx0hxP3MU+BwXhgXoAQQgghDhhTbxcgDj79U1J6uwQhhOgRyS0hhK+R3BJCAHy8opR//eL5FvGV45O486j+3obGbzLjTCQO/C8VHa2o7QmEtt2AEvEjVfzKf3Lf4dPcBQzkKvwNkVhNBiwmA1aTAavR89PfYiDO5kdCqB/xIVYiAy3dnmNP7O/cWlvmmVIr+3dNDZfmYkH5QsCznoZx+j8AUEdcih47DNcF32Fc8SZBvz7LSU1NfGELxqTrDBt0DnrMsP1asxDi4CfnXEL0TdLUEN20tLQQFhra22UIIcQek9wSQvgayS0hhFvTeG7ONgCuPSKZW49M7dZscGtu7l16PxUdxYSaI7AXX05hqwGq/4bJloRf7Nc0GQtYrj5ER/lJaM5IzwP13/ajgG5AVwPQ1QDQLVhNRuJsVvpHBvDQ8enE2vz2qN79mVuqprO+rBmAEQkhXe5bUb2SZlczEX4RZHd0YKhch260og6/xDPAYEIdewNa2jGcP/1mftLqOMIJlon/2C+1CiF8i5xzCdE3SVNDdFNdW0tSYmJvlyGEEHtMcksI4Wskt4QQeVWttDpVbH4mbp7cvaEB8Pz6F1lStRQ/ox+vTPo3QZP7Ma+gDk0HSMPuOoIZdS9Q5dyCf/znf/qcumZEVwOpVgOoagvl0VmX8+rpk/ao3v2ZWxvKm2h1qgSYDaRFB3S5b3bpHACmJhyJZdXbAGhZZ0JA18V/9Yh0ks/7gekFP2KJzgZL0H6pVQjhW+ScS4i+SZoaQgghhBBCCCHEAbZyux2AkUk2jIbuDY3PC7/g0y2eRsUjYx4iMywTgAtH7/zhXCLXae/x9qZ3mVU6G1XX0NEBHV3X0dFxaW6anE04NSeKQUUxNIG5Cfwq+bXpbfKrRjAwJng/v9ruqpoczMirYfqmGlaVeKaeGppgw2TYsfSnW3Mzr3w+AEfZBmMoeAEAddRVu96pwUjAwJP3a91CCCGE6H3S1BDdjBo+vLdLEEKIHpHcEkL4GsktIcSKYs8H+Yclh3a7b2nVMp5d+zwANw65nqkJU3bcqTpR6rag1OSi1ORgrsnllppcbmmrhaAY9OAE9JBEdFui58+hyWhhaXQERmB3NtLobKSirZK7ltyPKWgzD8//iv+dfcmf1rsvckvVdD5dXc4PG6u9jYzfjEi0cduUVNyam431G/m1YgkLKxfR6GwizBrGqG2/oqCjpk5Fj8z4y7UIIQ4Ncs4lRN8kTQ3RzYacHIZmZfV2GUIIscckt4QQvkZyS4hDm67rrCy2AzA6OaTbfU+sfhpVVzmx3wlcMvAi733Gxc9hXPIiiuba9Y6bK1CaK6B8Zbe7rOZAbBHp6JEZZEUM5JyISXxSN4d89f9YUXIco5Ni/rDmfZFbL83fxhuLir2/j0i0cfzgaI7JjCCneTGflT7D7auW0exq9o5RULgg9VSss54BQD3s6r9UgxDi0CLnXEL0TYY/H7LD088+y4RJk4iMjSUpJYWzzj2XzZs3dxnT0dHBLbfdRnxyMhExMZx7/vlUVVV1GVNcUsKpZ5xBWFQUSSkp3Hvffbjd7i5j5i9YwLgJE7CFhzN42DA+/PjjbvW88eabZAweTEhEBBOPPJIVK7ufuImec7p2c4IshBAHKcktIYSvkdwS4tBWWNuGvd2Nn8nA4LiuUz8VNRdR1lqGxWDh7hF3etfaUEqXY/r1WRTNhW61oSWORR1xGa5jnsF5wQ84rl2J88IfcZ38Ju7JD+AeeTlq2jFokQPRDWYUVyuGyrUYN36Gaf6j3LHqAyJUKwZzEw8ufvVPa/6ruVXS0M67S0oAuGFiP+bfMo5PLhvJJWMTmVn5JfcsvY+ZpbNodjUTYrFxXNIxPDrmYWb+7WeuaHWjuNrQIgeh95v4l+oQQhxa5JxLiL6pR1dqLFy0iGuuvprDRo7Erao8+PDDnHjKKaxduZLAwEAA/n733fw8Ywb/9+GHhISEcNsdd3DOBRcwb9YsAFRV5bQzziAmJoZ5s2dTWVnJFVddhcls5tGHHwZgW1ERp515JlddcQXvv/MOc+fN47obbiAuNpajp00D4PMvvuCue+/l5RdfZMxhh/Hyq6/yt1NPZf3q1URHR+/DQ3ToCQ0J+fNBQghxEJHcEkL4GsktIQ5tKzunnhqeaMNi7Ppdw18rlwAwMmoEAabORbM1N6ZZ/wBAHXIO7uOeg10sLK4Hx6PHjej+hKoLxV6EUpvvudXk4lfwE4/UlHBDbDTVhll8m3c6p2QO323NfzW3npm9FaeqMz41lJsmp3ibNWWt5by56T8AnNn/dI5PPo4hEVkYFaO3duPqdz1/HH31Ll+3EELsjpxzCdE3KR0tLfrePrimpoak1FRmTp/OxCOOoLGxkcSUFD54911OP+00APLz88keNYr5c+YwdswYZvzyC6edeSbbCgqIifFc3vqft9/mvgcfpLSoCIvFwn0PPMDP06ezesUK73NddMkl2Bsb+f6bbwCYeOSRjBo5kheeew4ATdNIGziQ6669lr/fccce1d/U1ER0fDzV5eXYbLa9PQx9TmtbG4EBAb1dhhBC7DHJLSGEr5HcEuLQdsfXm/hhYzU3TurHTZNTu9x3/YKbWF69gtuzb+X89HMBMK56G9OcB9H9QnFesRACIv5yDcalL2Fa+CS3REcyJzAAfzWd+Wd9gMGw6wkd/kpuLd9u56IP12JQ4JurDmNgTBDgmWrr1l/v4NfKxYyKGskbk171Njt+Y9j0FeYfb0QPiMJ5zXIwWfeqBiHEoUnOuYTwLXv6eX2Ppp/a1ZMAhIeFAbB6zRpcLhdTp+xYxGzgwIEkJSWxbPlyAJYuW8aQrCxvQwNg2rRpNDU1sSk31ztm5338Nua3fTidTlavWdNljMFgYMqUKd4xu+JwOGhqavLempubdzv2UJb3uynFhBDiYCe5JYTwNZJbQhy6POtp7HqR8DZ3G2tq1wJweOx4z8aWKoyLPOtJuCfeu08aGgDq2JtQsy/mnroG/DSNdmMBL6z6crfj9za3VE3nXzO2AHDOyHhvQwNgdtlcfq1cjEkxce+Iu7o1NNB1jCvf9OxnxKXS0BBC9JiccwnRN+31QuGapnHn3Xczfvx4sjoX3KmqrsZisRAaGtplbEx0tHddjaqqqm7TQ8V0/u4dU129yzFNTU20t7fTYLejquoux/x+jY+dPf3sszz+xBPdtq/dsIHAwECyhwxh85YttHd0EBwURHJSEjmdjZakhAQ0XaesvByAoYMHs3X7dlpbWwkICGBAaiobcnIASIiLw2A0UlJaCkBWZiYlZWU0NTfj7+fHwPR01m7YAEBcTAxWq5WiYs9iaYMyMqiorMTe1ITVYiFr0CBWr1vneX1RUQQGBrK1qAiAgWlp1NTWUm+3YzKZyB4yhDXr1qHpOpEREYTabGzZtg2AtP79sdvt1NbXYzAYGDFsGOs2bMCtqoSHhREZEcHmLZ4TTZfLRUlpKdW1tQCMGj6cDTk5OF0uQkNCiI2J8f5PISU5mY6ODiqrqwEYPnQoeZs30+FwYAsOJjEhgU15eQAkJybidrspr6wEYNiQIWwpLKStvZ2gwEBSkpPZ2Hm8E+PjASjtPN5DBg2iqLiYltZWAvz9SRswgPUbNwIQHxuLyWSiuPN4D87MpLTzePtZrWRmZHiPd2x0NH5+ft7jnZmRQWVVFfbGRixmM0Ozsli1di0A0ZGRBAUFeY93RloatXV11Dc0YDIayR46lDXr16NpGpHh4YSGhrJl61bP8U5Nxd7URG1dHQZFYUR2Nus2bsTtdhMeGkpUZCT5nce7f0oKra2tVNXUADAyO5uc3FwcTiehNhtxsbHk7nS8HQ4HFZ1/V4YPHUp+QQHtHR3YgoNJSkggp/N4JyUmoqkqZRUVnvdsVhaF27bR1tZGYGAg/fv1Y8OmTZ73bHw8BkWhpKzM854dNIjikhKaW1rw9/MjIy2NdZ3HOy42FovZzPYSz3y4gwYOpLyigsamJqxWK4MHDmTN+vWe92x0NAH+/mzbvt3znk1Pp7qmhga7HbPZzLCsLFavW4eu60RFRmILDqaw8z2bPmAA9Q0N1NXXYzQaGT50KGs3bEBVVSLCwwkPC6OgsBCAAampNDU3U1Nbi6IojMzOZn1ODi6Xi7DQUKKjosgvKAAgtV8/2trbqep8z44YNoxN+fk4HA5CbDbi4+LIzc8HoF9SEk6Xi4rO96xkxI73bEtLy0GVEZqmkV9QIBkhGSEZIRkB+MZ5BCAZgWSEZMShmRE1bSqVTQ6MBtDriljVuN2bEXNL5+HSXCQExlO/1U6d3sCQzS9hdTbTYktnvT6YtMbGfZcRh/8Da1k+19o38UJ4GJ9tfZ1RShxBpqBuGaGqqjfjfsuIwrJt5LXlMSxtKEq9AcWpdMuINY3+5Fa1EGCCyREtdDgcFJeUUN1Uw1PFTwNwbOgx1G21Y4mt3JERusqI5tkYqjagGizkBIwjQ9MkIyQj+nxGgPxbY1+eRzQ2NbFq7VrJCMkIyQgfyQhd37NJpfZ6+qmbbrmFGTNnMmfmTBITEgD45LPPuPraa2mqr+8y9ojJk5k8aRKPP/oo1994I8UlJfzw7bfe+9va2giPjubbr77i2GOOYcjw4Vx84YXcdeed3jHTZ8zg1DPOoKEzgPqnpzNv9mzGjR3rHfOP++9n4aJFLJw3b5c1OxwOHA6H9/fm5mYGDBwo00/9Tl19PRHh4b1dhhBC7DHJLSGEr5HcEuLQ9c36Su7+No/hCTY+vXxkl/ueWP0UX279mrMGnOlZJLxkCZZPzkBHwXXhj+hxw/d9Qa423P87g/NN1Wy1mJkQMoUXj97xZcDyxg6Wb7ezpqgWi3XHlRK17nxWd7xFq17t3RbpF0l/Wwr9bf1JCxnA2KhJnPHWJupaXdx79AAuHZfkHfvM2n/z6ZbPSQpK5JOj/w+rcaerMBpLMP94E4Yyz0wM7nE3o068Z9+/diFEnyfnXEL4lj2dfmqvrtS49fbb+Wn6dGbNmOFtaICnC+p0OrHb7V2u1qiqrvZONxUTE8PKVau67O+3DqV3THQ01dXV3cbYbDb8/f0xGo0YjcZdjtl5Wqvfs1qtWK1yueqf6ejo6O0ShBCiRyS3hBC+RnJLiEPXjqmnui5eq+s6izsXCZ8QOx5Ul3dxcC37wv3T0AAwB2A682Nu/vB4bo2Exfa53DP7RVzNR7Cm2ElZo6PreMWNJXImlogFKIqO5g4G3YDB3EhtRy21HbUsr14JgFV5lUbjCfQLH8f5o3d8drCpPpfPt3imurpnxF07Ghq6jmHTV5hm/QPF2YxuDsQ97XG0rLP2z2sXQvR5cs4lRN/UozU1dF3n1ttv57vvv2fGjz+SmpLS5f6RI0ZgNpuZu9OVEps3b6akpISxY8YAMG7sWDbm5HRpSMyeMwebzcagzEzvmLm/u9pidudC4wAWi4WRI0Z0GaNpGvPmzfOOEXuv8nfNIiGEONhJbgkhfI3klhCHrhXb7UD3pkZRcxEVbZVYDBYOixqFcfU7GGrz0f3DcO/vqxQCIhh+6n85ttmJrsCshv8x33krtX6fYrJWMyw+mONSLZwzVicp602skfNRFJ3+lsmM0B+jdcu9NOc/TEDNrZyZcDMXpJ9HfEAiDr0J/4RPiBzwAVXtnqllVF3liTVPoaFxXNIxjI3p/Dd8hx3TD9dh/ukmFGczWvxhOC+dhTbkbPj9WhtCCLGH5JxLiL6pR1dq3HLbbXz6+ed8/sknBAUHU9k5R1ZI5xUUISEhXHrxxdx1772EhYVhs9m4/c47GTd2rLfZMO2ooxiUmcnlV13Fvx57jKqqKv75yCNcc/XV3qsorrziCl5/803+cf/9XHLRRcybP58vv/qKb77csWjZzTfeyJXXXMPIkSMZPWoUL7/6Kq1tbVx84YX76tgIIYQQQgghhBD7TG2Lk6L6dhRgZFLXpsavlYsBGBk1Ar/2Boy//hsA96T7wD9sv9cWFJvGpJQnGZp/B9/YzGyxgCV8KYQvJTp6DIHOUH5pnINbdxNmDeO+UfdyZPwkAGbn1/LYjALKa/14bxZMSR9KuDqBbY3f4hc1l80tazjnlwu4fNClWA1WchvyCDIHcWv2LQAo5aswf3c1SnMFumJEnXAH6tgbwbDXy4AKIYQQog/r0ZoafkFBu9z+1htveJsJHR0d3H3vvXz2xRc4HA6OPuooXnzhBWJ3mhZqe3ExN996KwsWLiQwIIALL7iAxx55BJNpxwnL/AULuOuee8jNyyMhIYF77767W8Pi9Tfe4LkXX6SqqorsYcP49zPPMGb06D1+8Xs6R9ehRlVVjJ0LWAohhC+Q3BJC+BrJLSEOTdM3VXPLl5sYGB3Id9d0/bfr9QtuZHn1Sm7PvpWL8xdgzP0GLW4Urgu+BaVHkyz8JUpNHqbPz2OFauf/ImKYZ1HQ2fGxwZHxk/nHyLsJ9+s6R32bU+X1hdt5d2kJbs0z3qjAmxfF8b/tr7C8ekWX8feMuIszB5yOYeOnmH65G0V1ooX1x33iy+hxI/b/CxVCHBLknEsI37Knn9fv9ULhfYE0NXYtJzeXrEGDersMIYTYY5JbQghfI7klxKHpsRkFfLS8jAtHJ/DAcene7W3uNo767lhcmouvRj9B+mcXAOC8eDp6zLADX2hDEZbPz0FpLKEkJI7/DT+FBdU5XDbkYk7sdwLK7qaD0nW2lZbwzi/LKa2sYvhhk7j12KHous6Mkl94bt0L1DsaGBo+hHcmv4Z5/uOYVv0HADX9eNwnvASWwAP4QoUQfZ2ccwnhW/brQuGib+twOP58kBBCHEQkt4QQvkZyS4hD08rtu14kfEX1Slyai4TABFLX/g8ANeOk3mloAISl4DzvG8yfn0tSXQF/X/E5xwx7mEH9ToD2epSGbSgNWz0/7UUozRUoLRXQUkWm6uQZAAvouS+gcRpq9oUcl3wsh8eOZ27ZfCaHD8X65cUYti8AwH347aiH335Ar0gRQhwa5JxLiL5JmhqiG1twcG+XIIQQPSK5JYTwNZJbQvRNT88qpKbFyaMnZuBn3jHdiUN1UN/WTl5VC9C9qbG4cgkAE0IyMf36HgDq4bcdoKp3IzgO17lfYf7ifAxVGxi24u8oa+5HcTT+6UP1gEgwmFFaKjCu/xjj+o/RoocQmn0hp0YPwfzZ+Sj2InSzP+7jX0IbeOIBeEFCiEORnHMJ0TdJU0N0k5iQ0NslCCFEj0huCSF8jeSWEH1PZVMH7ywpAUDXdZ45dRCKoqDrOpfNuZLi5nIUv8voF5BOVJDV+zhd171NjSOqtwKdV2lEHQTTpQRE4Drnc8xfXoyhbDmoHQDowfHoYf07bynotgT0oFj0oDgIigajBXQdpXQpxnUfY9j8I4bqjRhm3uPdtW5LxHXae+jRWb316oQQhwA55xKib5KmhuhmU14eo4YP7+0yhBBij0luCSF8jeSWEH3Pkm1275+/31hNRnQQV09IZmN9DpsbCwDwT3qfQQEPdXnctuYiKtoqsSgmxm5ZCBwEV2nszGrDdc7nbF7wGQOHjEQP7QfmgD9/nKKgJ43HnTQe2h/FmPMFhnUfY6jfgpY0HtfJb0FAxP6vXwhxSJNzLiH6JmlqCCGEEEIIIYQQf9GSbQ0ApEUGsKW2jefmbCUtKoB17bO9YwymFnL1F7A7hhFq9UxBtbhyMQCH4U+ArqFmnHhwXKWxM6OZ5rCsva/LPxz1sKtRR10F9u0QmizrZwghhBBir8lZhOgmOTGxt0sQQogekdwSQvgayS0h+hZd11lS5Glq3H9cOueOikcH7vh6E9OLZwHgqjoVzRVCnauM2xffSUfnVE7eqadqiwFQxx9EV2nsZJ/klqJAWIo0NIQQB4yccwnRN8mZhOjG7Xb3dglCCNEjkltCCF8juSVE37Ktrp3qZicWo8KIRBv3H5vGmH6hdBiKqHPUYDH409EwioC6awgyB7G+bgMPLv8nLa5W1tSuA2BiWztq+gno0YN7+dXsmuSWEMIXSXYJ0TdJU0N0U15Z2dslCCFEj0huCSF8jeSWEH3Lb1dpjEwKwc9sxGw08NKZWYRHbwKg3T4QdDNj4zN5dvxTmA1m5pTN5aaFt+DSXCS63PRzuw+utTR+R3JLCOGLJLuE6JukqSGEEEIIIYQQQvwFSzvX0xiXEubdFuJvJCjc09RwNg4FYFRyCIdFj+Khwx4AYEP9RsBzlYaWfjx6dNaBLFsIIYQQwidJU0N0M2zIkN4uQQghekRySwjhayS3hOg7VE1nWZEdgPGpod7tOfWbqHNUYzX4o7ZmADC2n+f+45KP4aahN3jHHtHeftCupfEbyS0hhC+S7BKib5KmhuhmS2Fhb5cghBA9IrklhPA1kltC9B25VS00drgJshoZEh/s3T6z1LNA+JSEibxxzkiePDmTAVGB3vsvTjyeW7QwTm9uYUz8ZPSYg/uDN8ktIYQvkuwSom8y9XYB4uDT1t7e2yUIIUSPSG4JIXyN5JYQfceSzqmnRieHYjJ4vjeo6RqzS+cCMC1pGkfGR+x4gNuBcfW7GJe+yJWOJnTFiOuEO9APeOU9I7klhPBFkl1C9E3S1BDdBAUG/vkgIYQ4iEhuCSF8jeSWEH3Hb+tpjE/dsZ7GxvocqtqrCDQFMD5mrGejrmPY/COm+Y+hNBYDoEVn4Z766EF/lQZIbgkhfJNklxB9kzQ1RDcpycm9XYIQQvSI5JYQwtdIbgnRNzjdGiuLG4Gu62nMKp0NwMS4I7AarSg1uZhm3ouhbDkAemAM7kn3oA0+EwzGA1733pDcEkL4IskuIfomWVNDdLMxN7e3SxBCiB6R3BJC+BrJLSH6hnVlTXS4NSICzaR3rpfhmXpqDuCZegrVifnz8zCULUc3+eEefxvOKxehDTnHZxoaILklhPBNkl1C9E1ypYYQQgghhBBCCLEXfltPY1xKGIqiAL9NPVXtnXrKULQApbUaPSAK58U/Q3B8b5YshBBCCOHz5EoN0U1ivJxkCyF8i+SWEMLXSG4J0TcsKfptPY1Q77aZJZ6ppybFT8RqtGLI+w4ANfNvPt3QkNwSQvgiyS4h+iZpagghhBBCCCGEED3U6nSzvqwZ8FypAZ6pp+aUeaaeOirxKHB3YNgy3XNf5im9U6gQQgghRB8jTQ3RTWl5eW+XIIQQPSK5JYTwNZJbQvi+ldsbcWs6iaF+JIX5A7uYemrrXBRnC3pwPHr8qF6u+K+R3BJC+CLJLiH6JmlqCCGEEEL0QF5lC+vLmnq7DCGEEL1sx9RTYd5t3aee+gYAdeDfQJF/fgshhBBC7AtyViW6GTJoUG+XIIQQPSK5Jf6MruvMyqthfflfa0bUtzo59/3VnPf+Gorr2/dRdeJQJLklhO/bsUh4KOD5f02XqaecbRi2zgJAG3Rqb5S4T0luCSF8kWSXEH2TNDVEN0XFxb1dghBC9IjklvgjHS6VO77O5YbPc7jwg7WU2ve+GfHZmgraXRpuTefjlWX7sEpxqJHcEsK31bc5yatqBXasp1HYtJWq9mqsRqtn6qnCX1Bc7egh/dBjhvVmufuE5JYQwhdJdgnRN0lTQ3TT0tra2yUIIUSPSG6J3alqcnDBB2v5MacaAIdb44lfCvdqXy5V4787NTK+WFNBi8O9T+oUhx7JLSF827IiOwAZUYFEBlk826qWAzAyckTn1FPfAaAOOgUUpVfq3Jckt4QQvkiyS4i+SZoaopsAf//eLkEIIXpEckvsyvqyJs54ZxUbK5oJ9TfxzxMyMBkUZuXXsmBLXY/3NzOvlqpmJxGBZlIj/Gl1qny1rnI/VC4OBZJbQvg279RTqaHebcurVwAwJno0OJowbJsLgDbw5ANe3/4guSWE8EWSXUL0TdLUEN2kDRjQ2yUIIUSPSG6J3/tuQxUXfLCGmhYnGVGBfHHFKM4dFc9FYxIAeGzGFpxurUf7/GhFKQDnjoznkrGJnm3LS1E1fd8WLw4JkltC+LalnVdq/LZIuEtzsbpmDQBjY8ZgKJiBojrQwtPQo/rGfO6SW0IIXyTZJUTfJE0N0c36jRt7uwQhhOgRyS3xG13XeX7OVv7+TS5OVWdKegT/u2wESWGeb2jdOCmFqCAL2+vbeW9pyR7vd2NFM6tLmjAZFM4dFc8pQ2Ox+Zkobuhg/l5c9SGE5JYQvmt7fRvb69sxKjA6ORSADXUbaVfbCbeGkRYyAEO+Z+opLbNvTD0FkltCCN8k2SVE39TjpsbCRYs4/ayzSE1Lwy8oiO++/77L/Vdecw1+QUFdbn879dQuY+rr67nk8suJiosjJiGBa66/npaWli5jNmzcyNSjjyYkIoIBAwfy7+ef71bLl199xbARIwiJiGDUmDFMnzGjpy9HCCGEEH3I0iI7b/zqWQzwmgnJvHbOEIKsJnRd55OCT3l2/b9IHfQ5/knv8ta2uzl7xkWcPv0sHlj+MM3O5t3u9+Plnqs0jhscRXSwlQCLkbNHxAHwwbLS/f/ChBBCHDRm5dcCMCYllGA/E7BjPY3R0aMxdNgxFM0HQMvsG1NPCSGEEEIcTHrc1Ghra2PokCG88Nxzux1zzNFHU1RY6L19+N57Xe6/9IoryM3N5cfvvuOrzz9n0a+/cv1NN3nvb2pq4qSTTyY5OZklCxfyxGOP8di//sXb777rHbNk6VIuvuwyLr3kEpb9+it/O+kkzjr3XHJycnr6ksTvxMfG9nYJQgjRI5Jb4jf/61zI+5yRcdw+tT+Gzm/HrqpZzbPrnueH7T+R27IEU9BmFP8itjYXUNxSws/F07lkzuVsbdrWbZ91rU5+6Fxo/OIxid7tF4xOwKh4Gin5VS1sby5mY518E0zsGcktIXzXb02NowdGebctq/Y0NTxTT/2MornRogajR6T3So37g+SWEMIXSXYJ0TeZevqAY485hmOPOeYPx1itVmJjYnZ5X15eHr/MnMmvCxYwauRIAJ5/9llOOf10nvzXv4iPi+OTTz/F6XLx1uuvY7FYGDx4MOs3bOCll1/myssvB+DV117jmKOP5vZbbwXg4QcfZM7cubz+5pu88tJLPX1ZYicmU4/fFkII0asktwRAVbPD+0HThaMTutz3WeEXAIyLGcukuInY2wy8PLcMVbVwy5FJ/FD5FsUtJVw65wr+OfpBpiQc6X3sJ6vKcak62QnBZCfYvNvjQ/w4OjOK6bk1vLhsNuvcz+HQHNwz4u+cOeCM/f+ChU+T3BLCN9W2OFlT0gTA1IwIAJqdzWyqzwU8i4Qbl3m+sKdlntI7Re4nkltCCF8k2SVE37Rf1tRYsHAhSSkpDB0xgptuuYW6uh1zTS9dvpzQ0FBvQwNg6pQpGAwGVqxY4R1zxIQJWCwW75hpRx3F5oICGhoavGOmTpnS5XmnHXUUy5Yv321dDoeDpqYm7625effTTBzKiktlGg0hhG+R3BIAn6+uQNXhsOQQMqKDvNur2qqZX74AgFuH3czZaWdy9bDTOSfzONTWgXyzNJJ3jnyXw6JG0eZu4+9L7uHNnP+g6RpOVeN/q8oBuGh0YrfnvHhsIga/Upa1exoaAE+ueYavtn6z/1+w8GmSW0L4prkFtejAkLhg4kL8AFhZswoNjX7B/YjVDSgliwFQ+9jUU5JbQghfJNklRN+0z9uVx0ybxqknn0xKv35s3baNBx9+mFNOP535c+ZgNBqpqqoiKiqqy2NMJhPhYWFUVVUBUFVVRUq/fl3GxERHe+8L6xwb/bv9xERHe/exK08/+yyPP/FEt+1rN2wgMDCQ7CFD2LxlC+0dHQQHBZGclEROrucbN0kJCWi6Tlm554ONoYMHs3X7dlpbWwkICGBAaiobOqe+SoiLw2A0UtIZnFmZmZSUldHU3Iy/nx8D09NZu2EDAHExMVitVoqKPfN/D8rIoKKyEntTE1aLhaxBg1i9bp3n9UVFERgYyNaiIgAGpqVRU1tLvd2OyWQie8gQ1qxbh6brREZEEGqzsWWbZxqNtP79sdvt1NbXYzAYGDFsGOs2bMCtqoSHhREZEcHmLVsAcLlclJSWUl3r+bbrqOHD2ZCTg9PlIjQkhNiYGPI2bwYgJTmZjo4OKqs903IMHzqUvM2b6XA4sAUHk5iQwKa8PACSExNxu92UV1YCMGzIELYUFtLW3k5QYCApycls7DzeifHxAJR2Hu8hgwZRVFxMS2srAf7+pA0Y4F3sKT42FpPJ5P0f1eDMTEo7j7ef1UpmRob3eMdGR+Pn5+c93pkZGVRWVWFvbMRiNjM0K4tVa9cCEB0ZSVBQkPd4Z6SlUVtXR31DAyajkeyhQ1mzfj2aphEZHk5oaChbtm71HO/UVOxNTdTW1WFQFEZkZ7Nu40bcbjfhoaFERUaS33m8+6ek0NraSlVNDQAjs7PJyc3F4XQSarMRFxtL7k7H2+FwUNH5Ph8+dCj5BQW0d3RgCw4mKSGBnM7jnZSYiKaqlFVUeN6zWVkUbttGW1sbgYGB9O/Xjw2bNnnes/HxGBSFkjLPtC1ZgwZRXFJCc0sL/n5+ZKSlsa7zeMfFxmIxm9le4llgd9DAgZRXVNDY1ITVamXwwIGsWb/e856NjibA359t27d73rPp6VTX1NBgt2M2mxmWlcXqdevQdZ2oyEhswcEUdr5n0wcMoL6hgbr6eoxGI8OHDmXthg2oqkpEeDjhYWEUFBYCMCA1labmZmpqa1EUhZHZ2azPycHlchEWGkp0VBT5BQUApPbrR1t7O1Wd79kRw4axKT8fh8NBiM1GfFwcufn5APRLSsLpclHR+Z6VjNjxnm1paTmoMkLTNPILCiQjDuGMyBqcxcfLPfs5OsVKU3OzNyMWqAtQdZUMv3SailogG9bn5DAp3MH3fgYC6jfy3Ze5XJ51KUl+SXxd8g3/yX2HZdtXcHz83dS0OAm1KqT5tdDWbuuSEW7nVoKS30M3Oog1D2KYLZFf6mbyr9VPoqkaqa39JSMOgow4GM8jAMkI5DxCziN8LyNmeN72DLa5yMnNJTMjgx82/ezZT+Bg2td8hlXXaLZl4LJEUbltW585j1BV1Vu/ZIRkhGSE/FvDV84jGpuaWLV2rWSEZIRkhI9khK7r7Amlo6Vlz0bugl9QEJ/973+c/Le/7XbM1m3bGDx0KD99/z1Tp0zhqWee4eP//pcNa9Z0GZeUksID993H1VddxYmdTZFXX37Ze39ubi4jRo9m7cqVZGZmEhwWxttvvsk5Z5/tHfPmW2/x+BNPULyt+3zY4LlSw+FweH9vbm5mwMCBVJeXY7PZdvmYQ1F7Rwf+fn69XYYQQuwxyS0xI7eGm7/IISLQzLxbxmMxei5GdapOTvrpFOodDTw57l9MS5y640Gqi8KvHmJw0fsA1BsicA44liXJyTxW9AVOzYlJi6C5cirXZJ/KzZMHdHnOitYKrpx3DVXt1ajtiQTWX8+cGybz0sYX+WTLZygoPHTY/ZyUcuKBOgzCh0huCeF7Whxuxv37V1yqzg/XjCY9OhCA06efRXFLCc8e/jRHz38eQ+ky3Ec+iDr62l6ueN+S3BJC+CLJLiF8S1NTE9Hx8X/6ef1+mX5qZ/1TU4mMiKCwsxsUExNDTWd35zdut5v6hgZiOtfhiImJofp3Y37rYv7ZmJjdrOUBnrU+bDab9xYcHPzXXlwfVdrZHRdCCF8huSX+t8rzHjhreJy3oQEwp2wu9Y4GovyiODJ+0o4HNJdj/vRMb0OjVbcSrtURW/BfTpv9JO9U2YnGgttQh3/858xuvYfpxb+g6RoAdR113LDwZqraq0kJTiGg/mpqmgz8klfLHdm3cdaAM9DR+efKx/hp+88H7DgI3yG5JYTvWVhYj0vVSQn3Jy0qAPA0uItbSjAqRg4zR2AoXYaOgjpw91/881WSW0IIXyTZJUTftN9XyyktK6Ouvp642FgAxo0Zg91uZ/WaNYwcMQKAufPno2kao0eP9o556JFHcLlcmM1mAGbPnUtGejphYWHeMXPnzeOmG27wPtecuXMZO2bM/n5JfV6TrDUihPAxklu+Y0N5E3d/m0diqB/HD47mqIER2PzMbGks5MnVTxMXGMeJ/Y5ndPRhGBXjHu2zsLaVJdvsGBQ4e2R8l/s+2+JZIPyM/qdhMnhOewxb52D66SaU9gZ0SzDu4/5NRcQRzJ/1Lbai6UwzrGJ4Sy3ft9bxiS2It0PDKWsr4f7lD/Ju3vtcnnkJH27+P4pbSogLiOXVw58hr/lrUjo+ImS6g3UbTyUt+UxGhbSwqnEGD614lKLGapJsETQ6G7E7GrE77dgdjYT7hXNn9m1YjJZur0v0bZJbQvieWfmeqS6OGhiJoigALKv2rAuZFTaYkJwvAdBTjwRbQm+UuF9JbgkhfJFklxB9U4+bGi0tLd6rLgCKtm9n3fr1hIWFER4WxuNPPMGpp5xCTEwMW7du5b4HHmDAgAEcPW0aAJmZmRxz9NFcf+ONvPzii7hcLm674w7OOvNM4uPiADjn7LN5/IknuOb667nzttvI2bSJV197jaeffNL7vDdcfz1HH3ccL7z0EscfeyyfffEFq1av5tWXXvqrx+SQ52e19nYJQgjRI5JbvqG62cH1n22kutlJYW0b87fUYzYqjOzfwjbLC7RrzaytW8fPxdOJ9o/i+OTjOLHfCfS3pf7hfj/pXMj7yPQIEkJ3XFqe15DH+voNmBQTp/Y/BVQXxkVPY1r+KgBazFBcf3sTwlJIAi489xJK7Wfz9KKtlK+fywnKYi60L+Tsphb+LySYD8Ii2Nq0lfuXPwRAhDWMN0InkPTxKSS3VHquf9UhpuRtsos/QFePICdqMB2hm3h38+u7rX94xDBO6Hf8Xzu4wudIbgnhW5yqxvyCOgCmDYz0bl9WtRyAsVEjMM7z/P9FHX7JAa/vQJDcEkL4IskuIfqmHq+pMX/BAo494YRu2y+84AJefuEFzjr3XNatW4e9sZG4uDimTZ3KQw880GVaqPr6em694w5++vlnDAYDp55yCs898wxBQUHeMRs2buSW225j1erVREZEcN2113Ln7bd3ec4vv/qKhx99lO3bt5M2YAD/euwxjjv22D1+LXs6R9ehRlVVjMY9+3asEEIcDCS3Dn5Ot8ZFH65lbVkTAyIDOGFwNNNzqyls3kxA8jsoxna0jkQs7n64A9aAoc37WKMrifFhp/HM0edg/t1/5zanyqQXFtPsUPnPeUOZlBbhve+RlY/zXdH3HJt0DI+PuAfzlxdiKF0KgDriMtxHPgimXf8jp7yxg49XlJFqrOG81o8x5H5NswE+DAnh49AwzIqRt6sbGNji+YBLD4plc8qFrG/0Y2zN5yR3eBb404B7Qwcy38+P0IAohiWmEGoNI8QawpbGQmaVzmZ01GG8PvmVfXm4hQ+Q3BLCtywqrOeK/64nMtDMglsPx2hQ0HSNY74/AbvTzjvJ5zBm/jPotgScVy0FQ9/7+y25JYTwRZJdQviWPf28/i8tFO7rpKmxa6vWrmXU8OG9XYYQQuwxya2Dm67r/OP7fL5aV4nNz8QXV4ykX3gA6+s2cMOCW2lXWzE5U2nYdglofqC4MQXl4R+yHIIKQPGcqoRoI3nv2IdJDon27vvzNRXc/0M+SWF+/HLDWAyd04E0Ohs54YeTcWgO3jnyTUYtegljwc+d0009i9bDuc6V6hyMC5/EuHU27YqCBgTqOlpoKurY69EGn7mjQaLrKGXLMa54E8OWGSjsONXSjVb0sP7o4QMoC4njpNpf0NH57viviA+M3/WTiz5JcksI3/LwT5v536pyzh4Rx6MnDQQgryGfC2dfQoApgAUtAVgrVuM+4m7U8bf0crX7h+SWEMIXSXYJ4Vv29PP6/b6mhhBCCCEObR+tKOOrdZUYFHj+9MH0Cw9gdc0abll0O+1qOyMjR/Dc+KdwbJyJsXwBfvbN+DcWYKmtob7ewH9twbwTaqPRsJpzpp/Drdn3ck7mMei6zv9Wehb+O29UvLehAfDdth9waA4yQjMYkTvd09AwWnCd+TF6wugevwY9Ogv3GR+hlizFuvQlcHfgGnEJWsZJ3b+NqyjoiWNxJ45FadiKYdU7lKydRbxWgVV1oNTmQm0uycCY2GiW+fvxw/afuHrwlX/lMAshhNhPNF1n9mbPehrTMndMPbW8cz2NUbY0rAU/oBvMqEPP65UahRBCCCEOJdLUEN3ERkf/+SAhhDiISG4dvJZsa+DJX7YAcNe0ARwxIJzlVSu4bfGdOFQHY6JH89z4pwlc8Dim1e92e3xYUDzXByUwpWIt90eGscUCz2x8kF+3fsn5WQ+RU9mCxahwenac9zGqrvLFVs9irecG9Mf864sAuI95Zq8aGjvTk8bhShq35+PD+qNOe5x5odfz6M/5jAlp4v0TgjDZt2IonMWpdatZ5u/Hj0U/ceWgyzEohr9Un/AdkltC+I6N5c1UNzsJsBgZnxLm3f7behrjWlsA0DKOh6C++3dbcksI4Ysku4Tom6SpIbrx8/P780FCCHEQkdw6OJU0tHPrlzmoOpwyNIZLxyaypmYtt/16Jw7NweGx43lm/JMErHjL29BQsy9Gix2KHpmJHpEB1mAA0hq28e7C53mvejYfhASxuG0duUvOYGD4aBLjT8Tmv6MZsKRyKWWt5dhMAZy4/EMA3GOuRxty1oE/CJ1OHRbL83O3sbQxlLnaEKYeNg0160ym/mc8QZpGWVs5q2vWcFj0qF6rURxYkltC+I5Z+Z6rNCanhWMxef5/41AdrK1dB8Dh21cCfXeB8N9IbgkhfJFklxB9k3wdUHRTVFzc2yUIIUSPSG4dfFocbq7/dCP2djdD44N55MQMKtoq+PuSe3BoDibGHcGz45/CP+dLTAufAMA99RHcxzyJNuwC9PhR3oYGAGGpBJz8Elef9hN3NqeR7HTTYNIpj1nOcvUhpnw9hWvn38CrG17n3dz3ATi1qYkAVwfqgGmoE+/thaOwQ4DFyFkjPFeTfLCs1LPRPxzL6Os4tsWzKPr3277vrfJEL5DcEsJ3zMzrnHpq4I6pp9bVrsehOYgyBjCgvQUtIgM9cc+v5PNFkltCCF8k2SVE3yRNDSGEEELsUw63yg2fbWRzTStRQRZePWsIKh3cvvjv2J12BoVl8sTYx/DbNhfTL3cB4B57I+qoP19TwhzRj7Mu+5jT417iiNooxrQ7CNA02jQnK2tW8V7+B6yv34Ciw7l11WiRA3Gf+Gr3dS96wQWHJWBQYGmRnfwqz1Ql6qirONXtuXB2duksWl2tvVbfjxurmPLSEl5ZUIRL1bzb7Q47H+X/HwX2gl6rTQghekthbStb69owGxQmp0V4ty+r7px6qr0DBVCHXww7re0khBBCCCH2H2lqiG4yMzJ6uwQhhOgRya2Dh0vVuO3LTSwtshNgMfLaOUOICjbz4Ip/sqWxkAi/CJ4d/zT+lesxfX8diq6hDjmnR1dSKIrChVMO557zP+ffJ/3EgsgT+KKynodq6zituYWBLpUrGhtJNAfjOu2Drld89KKEUD+OzowC4MPlnVdrWAIZPOomUpwuOnQ3s7ZP75XaalucPPTTZsobHbw8v4iz3llNXmULqq5y5+K7eXHDy5w36yJuXnQbq2pWo+t6r9QJUNFawUWzL+Xqedfxft6HbGnc0qv17C3JLSF8w+z8OgDGpoYS7OdpQre4Wvm1cjEA4+3V6GZ/tKwze63GA0VySwjhiyS7hOiblI6WFt/7V+A+0tTURHR8PNXl5dhstt4u56BRuG0bA1JTe7sMIYTYY5JbBwdN17n72zy+21CFxajw9vnDGJsSxmsb3+DdvPexGCy8Ofk1hulmzP89FcXRiDpgGu5T3wXDX1zmq60O48q3MK5+F8XVim4w4Tr7M/QeLOp9IKwstnPBB2uxGBXm3zKe8EALqE4++r+JvBigMMISxX9OPvDTUN31TS7fbqgiJdwfe7sLe7sbk0Hh8BGrWdP2KRaDBbfmRsNzBUdW2GAuybyII+Mn79fFzTVdR9V075efNV3j+oU3srZ2bZdxsQGxTIgdz4TYw+lv64+/yY8AUwBWo3W/L76u6RqqrmJSTCg9+Ja25JYQB792l8qFH6xlY0UzDxyfSkpCKT9u/5kF5QtxaA4UYHZxKeFZ5+E+9pneLne/k9wSQvgiyS4hfMuefl4vC4WLbuyNjb1dghBC9IjkVu/TdZ1Hfi7guw1VmAwKL52ZxdiUMGaUzOTdvPcBuG/UvQy1hGP++G8ojka0+FG4//bGX29oAAREoE66F3X0tRhzvkCLyjzoGhoAo5JCyIoNIqeyhU9XV3DdxH5gtHD8sOt4ueB11jhrKKnbRFLE4ANW0/Ltdr7dUIUCPHPaIOJtfjz802Zmb1/D6tbPURS4bMCtHD9gDB9v/i/fF/1ITsMm7lpyL8lByfxr7CNkhmXu87rWlDZyyxc5VDU7vdssEXOxRq9FVy0YGo/BGrwVh6mAyrZKvtz6NV9u/brbfiwGK1aDPybFjFExYlBMGBVj583z3tPQ0HQVTdfQ6Pypq6i6io6naaHrGioqoHvvU3XV+zwDQzN46YjnifCL6FbDrkhuCbFnOtQOphf/ws/F01E1FZvFRojFhs17C8ZsMAN0u2or0BxIuDWcMGsY4X5h2Cw2jIoRXddpdbdS1VZNTXsNVe3VVLdXe/5eqyaK690UVrvYUu3C5TZgjSnivfJNNBbZvfvuH5TExds3EKVqOIdffCAPSa+R3BJC+CLJLiH6JmlqiG4sZnNvlyCEED0iudX7np+7jf+tKkcBnjolkykZkWyqz+WRFY8BcHHGhZyYOA3zJ6ejtFSgRaTjOv1DMAfs20L8w1APu2rf7nMfUhSFi8cmcve3efx3VRlXHJ6ExWggcthFjM/7D7+aVH5c9gTXnvDRAanHpWo88vNmAM4eGceweM83YZ46LZXTfnqAepeGq2kYL/wQTvLpVu4ZeRdXD76ST7Z8xueFX1LcUsxDKx7lv0d/iFHZd+uWlNk7uOGzjdS1urzbDH6lWKJmAtBRdTLuxsOg6ghQnBgDtmIKysMUVIBiakYx7GiEODUHTs2xz2rbnXz7Zu5dej+vTXoZ0x406iS3hOgur6qFWfm1tDlVWrVaCh2z2Oqci1Nv2Sf7V1CwKMGouhM3HX882ACm2B3/YG50Qrg1jGOTjuXEfscxOG8G5qZf0eJGoccM3Sf1Hewkt4QQvkiyS4i+SZoaopuhWVm9XYIQQvSI5FbveuvXYt78tRiAf56YwUlDYqhtr+WOxXfh0BwcETuBG4Zeh3HuoxjKV6FbbZ61LvzDerny3nHC4GiemVVIdbOTGZtq+NvQGDAY+VvaGfxa9BnfN+VxVVMpRlvifq/lw+WlFNS0ERZg5vap/b3bn1v3AvWuCiL9okhWL2e+1sEDP+QzItFGdHA41w+5lvMTjub0+VdR2FTIj9t/5uSUk/ZJTS0ON9d+uoG6VheZMYH857xhqDi4btGrlLZqTIw9kvuOu4m6VhdljR2UN3ZQ1jiA6oax6A1FWF2NWOnATCtGWjHShkFpQ1NU3Ci4FTp/KqiApiiAEU03otN5003oGDp/7tje6jJgb9fwt/hx77GZJIQGYTSaqXTYuXr1o6yuXcNLG17h9uxb//R1Hiy5pes6q2pWs6BiIQGmAMKsYYRZQzt/hhFisWFQDOiewZ7H8Luf+o4/mw2mPb5aRRwYLs3F2tp1bLYXYDVa8DcFEGDyx9/kj7/RHz+THwb2fOo0s8FMUnDSXjcyNV2juLmYPPtmNF2l3QlrS9tZXtRESb0bDC7MIaswBeegKJ73leYMxdUwHs0VjmJsQzG2oxjbwNiGYmhHUTxT4+24TkMBdBRDB4qpFcXYgsHUho6OQ2/yjtJVfzRXCLo7BM1lA90EBhehATqRQQq2AB2j0UV8YBzHJR3LOFM45vKVGBa/imHLL0DnAuGHiIMlt4QQoicku4Tom6SpIbpZtXYto4YP7+0yhBBij0lu9Z7pm6r595ytAPz9qP6cMzIeTdd4aMUj1HTU0N+WymNjH8G8eTqmVW8B4D7+BQhL6b2ie5nFZOC8wxJ4eX4R7ywpwWLyrPng8jubIO1zqkxG5s58gKNOf7dHazT0VGVTB6/MLwLgzqP6E+rv+RbbnLK5fFv0PQoKj415mOERw3noP//Frz6PzR9/REJoLUpdPjHt9VxtC+bZiDDeyHmTY5Km4Wf0+0s1qZrOnV/nsrm6lchAM2+cM5ToYCuPr3qe0tYSov2jeHjMvYQ2FxNdvYrB9VtQ6gpQ6gtR7NtRdpoOar8xAG7gxx2booHHQqO4Lcyf/xZ8wuCwwRyXfMwf7mZf5ZZbc+/RlSEADW0uVpU0omo6uq6ztXU9c2r+R1Fbzl+uY2fXZl3NlYMu/9NxNe01PL3mWfxMfvQL7kdKcAopwf1IDkrCYrTs05r+ihZXCzctvJXytgoyQtLJCE0nIzSDgSHpf+nD/X1N03UKqlsprG3D7qqhoGUVBS2r2Nq2HqfWvk+fK8RiY2zMWA6PHc/4mLG4XUFsLG/GrXVfrrFDbaO0fTPFbXmUtOdR0p5Pu7qLKy+CISC466ZoUxZplmOIt2UTH7SVIFctfqoRq2rAT9XxU934qU4M2m+P2Pn5FdoM8dQZk6jzS6LGEk+D0UwHTRix4G8Iw6IbCXbVYnPVEOSqI97PSWakmRAzoDpAdYHqRCnLx7D8apT2+i716bZEtIH7pqHrC+R8SwjhiyS7hOibpKkhhBBCiL3S4nDz+C9bALh8fBJXHp4MwCdbPmNZ9XKsRitPjfsXwS1VmKbfBoB79HVo6cf1Ws0Hi3NHxvPGou3kVrVw8xc7PlBOih0IYXnMa17F1nde4ZjTriAlYh9P0dXpiV8KaXNpjEi0cXp2LADV7dU8vuoJAC4eeCGHhWZi+u4Knm3+BcxAS+cN0FE4t7mZ/wsJpqK9hk8KPuPSzL/2jeVn52xlbkEdFqPCa+cMJS7Ej3ll8/l62zcoKPzzsAcJX/MRpgX/2uXjdUsQemA0mP3BHAjmAHRzgGeaM8UAugqaGzR1x591DaXLNrXb/Z6fKoqmoqou6ls6QFMxG3RCLKCoDqbZa7jCGME7tkAeW/Uv0kL6kxaS9peOx595Zu2/+WzLF/QLTmZw2GAGh2UyOHwwGaHpXRpMJQ3tvL+slC/XVtDuUjEGFGKJmoUpoMhz3DQj7qbh6JrZ+612709ju/fb8rq+c5NNwaCAQVFQdvqWv1t3827u+5yYfDxxgXF/WP/Ta//N3PL53bYbMBAfGE+AOQAFMCiGzudQvM+noKAou/5pUDxjPX/uvAZBUTBg6Fx03rN9UtxETkn92x/WqOs6j6x8nA31GwFY0lHHkqql3vv9jH7EB8bhZ/TH3+SHf+dPP6MfVqMVo8HoXcPFpJgwGowoKJ3rtmid67n8dtM713TRO9d46fyJ7h2j6xqqrqGjo2oqTR0u6tscNLQ7sbc7cGsairkRo7W6y+vQ3MGobSmA5pmezeBE6byx03Rtu2JUFMxGBYvRgNmo0KG20+hs4peSmfxS4pkSTm1PQG0bAKgophbPNHCmZgymZhRj92medM2E1pGArllAcRPkBzZ/hQArgMqIyBGck/I3MhpKMWyZgaHgcZS22j+sc0/o5kD0sFTP3/vWKpS2up493uSHHjcSLXEMWsIY9IQxnrwRQgghhBAHlDQ1RDfRkZG9XYIQQvSI5FbveG3hdqqbnfQL9+e2I1MBKLAX8PKGVwG4bdgtpPrHYPq/k1GcLWiJY1En3tObJR80IoMsPHBcOt9tqGLndW07DKdi50nmBPhzcssbvPDlz2hJJ3HykMHEBkQS5R9NpH/En34zXNM1qtqqqOmoxaAYMCkmTAYTJsWIyWBidUkzMwoKMZgM3Hl0Bh1qOwbFwMMrHqXR2URm6ECuTT4J8/9OxVCdg260UhQ8ihm1ERQbk7jpjOMITx6Mad6j3FTwOf+IjuS9vA84NfVkQq2hu6yp2dnMJ1s+I9gSTEZIOmkhA7BZbN77P19TwbtLSgB48uRMshNs1LbX8ugqTwPjwvRzGb/+K4xrP/C8xoQx6NGD0cLT0SPS0CPSITAG9uPVLd7XYm/n3PfWUNPiZESEjffOySB4+vXcVDiLTWYjS/zhzsX38NFR7xFsCd7lPv5qbhU1FfH5li/R0Slq3k5R83Z+Kv4ZAKNiJDkoCYPuT22LTl0L6KoFIs2EBdTjtmwDQNFNhLiOINI5lQF6IzaaCHS2EKw3E6i1EKQ3E6C3oWFAw4hbMXp+YqSs2Y1LN3JydgKpUTYwmNAUA9dUTWdlWwmvbHydx8c+AnjWSXhsegG1rTutdWLOpylsHugG/NuORjM0oJqqUI1VaIYOSltL/9Lx2RPzyxfQ6m7l/PRzAWhsd/HwT5vJrdpxFUG7/1xag+eCbiS46QI0pQPVVIbbXIbbVE6H2sHWpm37vdY/pQABO/3jTlfw1/oTpGUR6B5CsBZNDNX4661Y3Q78tHb89A6segdW3bPmjN7ZnNI7/9zu1qhpdqJ5t3f+3TKZWGk0URLYBIGFGP3LvLfdMWnh+Kv98dP646/2x1+NIxo7o2OMTE31Jy5AR3G1gbsd2hswFM3DsOAtFPeOhohutaGH9QdrMLo1BPxs6FYbWG1g2NV86Rq0VGGo34rSsA2aSlBcrSjVG7uM0o1WCIpBD4pF9wsBo6XzZgajFd1ohuB4T+bEDvPcd4iS8y0hhC+S7BKib1I6Wlq6XyN8iGhqaiI6Pp7q8nJsNtufP+AQ0WC3ExYa2ttlCCHEHpPcOvAKa1s5+c2VuDWdt84dyuT0CDrUDi6efTlbm7YyMe4Injv8GczTb8e48VP0gEicl/wCQbG9XfpBTdd1Lph1MZsbC3Y7xqSYiA2IJT4wjoTAeOID4wk2B1HWWk5xSwklLSWUtpTh1P7429e7YzVa+W/2faTPuAelpRI9IALXqe/hihvJue+tYUN5M5PTwnnz3KEozhZM703h3GCNPKuF89LO5Y7ht3bbZ6OzkRsX3kJuQ16X7TH+MaSHpBFAAj9uaEbVDEzsH8GU9GiMBiO/lMxkVc1qMkLS+LjZhH/hL+goqFMe7vUF4fOrWrjww7U0dbg5Mj2cV87IxH/2PTTnfMY58bGUm00cEXs4z014FoPimWKsydlEXkM+ufY8Suyl+Fv9AAVFwXv1QWxgLGcNOAN0A2X2DrbVtbG1ro2qZoe3AaYDy9tepdS9hBhjNv0t02hQt9KgbsOube2yZsCuWAwWTks9hUsjxhC7ZRbG3K/3ybfgAfIsZs6Oj0NX4L0pb5PoP5Az3v7/9u47Poo6/+P4a2Zrsuk9hECAkITeBHsF8ewVT3+2U8/e+3mevZ3l7AU9y52nZz29s3cRsaHSe4cASSCkbtqWmd8fGxYiqKDAZsP7+XjsY7M7k93PjMvbyXx2vt/vWVW/8WTtYRJ7PYTDW0WgZg/aqo7YaJkd+Ya/uxqMEOtPsWOAiyCJtGC0z+BhGwZW5DewsbExsIz1j9t/0wALGNwtmXHD8jFNsG2LBfWLeHXxawDcPPJGdssazRkvTGdeVVO0EkfCMhJ6PolhWLRWHkGwdo8fba2F6a7GcDaAGcQwIlc9OMxWPGYzphEAI1KZbUQqtY314ySZkTptEza+x8S2N14WuUWukjGgfT0wwTZwOxz0zEikV6aPPllJFKYlkOL0MpxE0tYtwqyagVE5HaN6XuSKpG0oiJPqhN6sye3H/OxM5rqC+FxJZLpSyXSnkOlKJsuVTKYjkVT/GoyaRZGh4tYtwqhdghFu+8X3sFMKCBcfhFV8EHb33SKNhl8r1IZRvyLS4DAdkSZGUh4kZOyQZmhXoOMtEYlHyi6R+LKl5+vV1FBTYxMab1BE4o1ya8eybZszXpjBV0tr2b9vJuNPGAREhsJ5edGrZHoyePHA58la+AGu96/ANkyCx7+M3WPPGFceH9a0rOGLii9ZV/ED1Yveo4Ygax0uFjuSaXUGIHpS9OfZtgM7mELkhLAFhoVhhAELjHBkYt0fvZaBwQ2Fh3Ps109jBFuwskoJHvMcpBYCsGhtE0f9/XuCYZs7Di/l2KH5mEs+5bt3/8g5eTk4DQend3+ECXNtWgKR1w4bfqqTHyHoXIlpJeEO9SLoWEXYUcOW8JhuXmr1UbxqOrbDQ+jQh7BKf37IoB3l+xV1nPHCDNpCFrv0SKUw1cPB656lu/8VTs3Ppc00yTNGYhsGDdYyWljzyy8KpPiPZe3qUQTCmz9MN91VJPZ+AMOwaVpyMVZbt42W2hjOekz3WhzOIMMKE9ijTxJpPpvWUCvOYAsH+5vIm/cOZvXcDb/lScVOKQBvWuTb6t40bG8aeJIjM4FbwfahuSL3oWCA92dX0NYWoG+mhyHdEsAKYy6dwI0pLt5ITmJgxkAclRcxaXEtPdK93HZYKQ7T4NPK//LKivH4nCncMvhpfM4NV7M4W2vIXPUp6RWf425ZiyPYiDPYgDPQiPkrG3UAlm1gGwam6QDDxDZN7i4s4QW7FtMw8dX8kdWVvcnyubjtsFJsh587Zl1IXbCaXTL25cw+f+owx42rZS3pFRNJr5hIQuNyHKFmHKEmHMGm31TnT7Ex2k+8R7aD9uG4DNOMPo/R3vAItWJYwU1fo/2qBtsdGZoNlw/bnQjOjebCiXbO1n/27PafI4/DlkVrs5+kurmYLVv2b/gnt8l0gTclMkycM6G9poTIEFH5QyONjOz+ajh0IjreEpF4pOwSiS9ber5ew0+JiIjIVvlwXjVfLa3F7TC47qDInAFfVnzFy4teBeDGkdeT2VCJ8+PrAAjvdbUaGlshJyGHY3sfDb2PhiEXY7x9Ie7ySUAFb4Z35d/GSKY7Mwi6/JiuWkxXLYajBSuYjhXIar9lYgfTgM0PU2UADx43gLFlWYStEKFQC6FgE+5Zr5I08S4MbKyifQke8URkaJd2xdk+LtmvF/d+soQ7PlzEnr3Tyet9ACN6HsLudV/wdUIC42c9RvPqkyLv4/CT0OMpHM5KrFASTcvPwgrkRl7MbMXhqcT0VmC6q8hIstmjdyoYkbkCwnYYK9DE0cunULxmOrYnleAx/8Duvut23f9bY5ceaTxwbH8ufGUW36+o53vgDQ7lVIeTv1S/xvU5mVTa33WYu9gKZBBuLcAKZBL5LyMt/ogAADu2SURBVLHhhLHpqsOVOp36xLcIGsW4HRn0ykykd1Yi+aleHO3ndr/y/5cVQZvurpHss8tu0P5K7e9AUcMaipsXU5rUSmK4AWNOLbTUYrTUQnN1+3UMYDvcWMUHYQ04Dqtov636FrwBpJXU8ofnp0MV/OugoYzqmYa56AMuevNM3vclMqtmFi1rP8PrHM7D4wZSlptEbVstV059HoBLBp/Pvr0LI0MELXwPx4J3MMq/xrB/unFnGyYYjsicCFsxMbxptO9nK/LaRhiuXjKd2vwevOu1aEh9hpzwefxr3NEUZni46IubqQtWU5Tck7/tfQM+ZwJGxTTMJR9jLvkEs2rmL76njRHd17+VEW0ugLHxS/7ErrK9adi5g7HyhmDnDcHKGwzJBdukQeABgrYNDSsxK6dhVE7HbL8aBMuKvIdhbmiymA7s1ELsjOLILbMYK71PpFlqdo5J1kVEREQkvuhKDV2psYlGv5/kpKRYlyEissWUWztOSzDMwY9NpqKhjQv27snF+/WiprWGEz86mXVtNfy+eBxXDboI178OwVw7h3Dv0YSO+Wf7yS35VWwLx7eP4Jh0T/QkrmU4acwYRFP+7oQLd8fsNgQz2IrZVofZWofZVovZWt/+uLb9vh6ztRajrQ5HoBEz3ALBlsi3un90Ejk89DRCo28Fc9Pvv4Qtm//7x1SmrWpgz97pDC9M5c1v53Kn60rO6R75xv3xOX9lUE4hjy66lsrWFaQ4M7ig753kegs32q4wvsalJNfOJrVhHrnOZsxQM0bAD4EmCDZh1K/ECDZhpxQQPPYF7KyS7beff4OZqxv4dlld9LEN9Kn+hKrKe5jtdlAaCDKgrY3SoEXQ24c1Sf1Y6yrA4XJFvgjf3pKwsLnf8TXLrNWMyNyVR/e5H6ej47+dRfWLOfGjk7GxeXHMv+ib1jeyoG4Fjlkv45j9CkbDT89tAGB124XwgHFYZYeDN+03bfv1b8/nlakV9Ej38uY5I0lwOXBMuodn5jzNwxlpOIJJXNXvaY4b2hOA23+4kzeW/o/StBL+1e9iPBPvwFj5bYeT/1bOQKySQ7GzSiNXjXhSsb0p4EkFd1LHE/O2HZnMPXoLb+Y5i2nltVz93zm0BkIMzEvkntFpJH1wMYZ/JRfm5PKVz4PP6eOp/cbzyarPeGruM3gdXv6535P0Lf8O59cPYjRsmOfDxohcTdB7NFb+8MgVLe6k9qsgfJE61zeJ1l/pEL23fvQzwI+fa7/feBvZ+H7zr2fYFrbTs80aGCIb0/GWiMQjZZdIfNHwU1tATY3NW7p8Ob169ox1GSIiW0y5teM88NlSHp+0nIJUD++cNwqv0+Tyr67ki4ov6Z3Sm+dGP4Pvm0dwfnUfdkI6gdMngC871mV3CcbqKTimP4e54stfPGn9a9kuH+G9ryE8/MyfPSG6uLqJo578vsPwSKelTKEt9VneSfIxJKWYejvIssbl5CRkM37vR+lh2Zirvseoav9W95pZGMGWX6zJyu5P8Ljn43I+FmPNHMwFb0e2t3Ja5EqJX7DE5eS47gUEsblt1C38rsfYDsuv+frPfLLqU0YXHMBdI2/EXPAOjpkvYa6YFF3H9qRilRwS+Xa8Nx0S0rET0iEhA9uXs03/TTa2hjh0/GSqGgOcsVt3rjmwmPKaJpY+czx3d6+i0unkvJJTOHPwBcyrnccpn5yOjc2zqbsxYvpr0YaalT8Cq+QQwiWHQNr2yfMZqxs4698zqGsJUZLtI9i4lr9a9zLYMZ9z8nKY6vWQ6k6lIdCAjc3t+Ydw+Oz3MOqXA2C7k7GK9sXqMxqr1wHKNtnp6HhLROKRskskvqipsQXU1Ng8jTcoIvFGubVjLK9p5tDx3xEM2zwybgAHlmXzv6VvcesPt+MyXTx3wDOUtLXiev5QDCtE8PDHscqOjHXZXY9tQ/0KzBWTMFd8FWlyNK2JfNvfmxY5eb25e29a5OS2Nx28qeBMwHZ6weWNjKnv9ILDs8Xf7n7+u5Xc+v4iynJ9nLNnTw4qy6L6f6dyVHghwfbXyHP4+LtZSM9V0zGaqjbdFJcPO3cQVu5gSMqNfMvdnQRuH7bLB55k7JwBm71iJO5sPFxPxTRqV8whIz0NNhpWiHAAc9GHPJGWzKPpaaR70nh17MukeVIBWFi3kBM/PgUDg5d2uY2yz27DrJ4ffQur596EB52A1ffgjvMkbGcTFq7jnJdmYhrwz1OGcscHi1hVVcU1WTfy12wnCbbB64e8wTWTr2fGupkcEjC4a1WkURDufyyhvf8EKQU7pNYFa/yc/vx0qpsic04Mz/fyQt6LBOe/xul5uSzwuAE4vs3k+tXLALATMwmPupDw0FPBlbBD6hTpjHS8JSLxSNklEl80p4b8ak6HxrYVkfii3Nox7vhwEcGwzV590hlTmkV9oJ6HZj4CwHkDzqFvck+cbxyMYYUIlxyGVXpEjCvuogwD0npipfXEGnxS5IR4oLF9WJ4dN8zXySO7c+iAXNISnNEJlHPH/o0TXzuI55K8FARDPFW+gO6hyGTUtumKjPHfbRh27hDsvMHYGX12nqHJDANSC7FSC6H0cJbOnEnKoEGbrGbOeZ0z3r2ED3yJLKKOB6bdz0273gTAk3OfBmBMcjH93jgLI9SKnZhFeOiphAf+Pjqh+462X99MjhiUy5szqzj9+emELJv0xDT2Pegp3vn6TGZ6XJz/wUkstZpIsCwur6zATsojNPYurD4H7tBaS3KSeOG0YVz++hzyU73cdWQZpntXEnP78fgXt3NFThbp4TDXrKnG9qYTHnUe4WGng9u3Q+sU6Yx0vCUi8UjZJdI16UoNXakhIiLyiz5bUM25L8/CZRq8ec5IemclctfUe3h18X/ondKbf495Ds9X9+H8+gHshIz2YaeyYl22xIA1+zUmTvgTI2wX6XkjsLuPwioYhZ03RN9y30LmwveZ/cFFnJqbgW0YPLL73aT78jjp41MxgDdWrqZPMITVcx+Chz7cKYZBqm0Ocuj4yaxrCmIa8MxJQ9i9VzozpzzG6Uuei653SU0dpxceTGj/myJXDHUi5uKPcb59ARgG4V3OITzij5G5MkREREREZIfQ8FNbQE2NzZs6YwbDBg+OdRkiIltMubV9tYXCHDr+O8prWzlrj0KuHN2HebXzOfWT07GwGL/Po4y0nLiePwzDDhM84gms0sNjXbbEUmsdeFJ2nqswfoVfyi1j2UT+9tmF/Ds5kQLbQVFaCV/Wz+VgfxN3VdcR3utqwrte0Kn28YSF67j6v3O5cN8iTh3VPfr8n988mg8DFXQP27yyy624+4z9mVeJsbZGMB3gSox1JSKdjo63RCQeKbtE4ouGn5JfzbKsWJcgIrJVlFvb19Nfl1Ne20puspvz9u6JZVvcPfVeLCwO7D6GXTIG4vzX7zDsMOGyI9TQEPCmxbqCTu+Xcssu2odzRz/Kp19dwSonrKqfi2HbnBN0EzzhNezuu+6gSrfcfn0zmXzVXps8f9XYp0n//i4OLz0Bd/awGFS2FXRlhshP0vGWiMQjZZdI19R5vtolnUZWRkasSxAR2SrKre1nVV0rT0xaAcCfDizG53by7vL3mFEzkwRHApcOvhjHV/dhVs/HTswiNPr2GFcsEh+2JLcSe+zNn4ZcEn38OyOF7id/1CkbGj8n3ZvBVXvdRVlnb2iIyM/S8ZaIxCNll0jXpKaGbCItLS3WJYiIbBXl1vbz148W0RqyGNUzjYP7Z+MP+qOTg5/Z73Ty6lfhmPwoAKED74LEzFiWKxI3tjS39up3Esf3OJQ8dxrnHPQMJOgPcxGJDR1viUg8UnaJdE1qasgmFi1ZEusSRES2inJr+5i0uIYP51XjMOD63xVjGAZPzP47NW219EzuyUm9j8b53qUYtkW439FYJQfHumSRuLE1uXX1qOt5+4j36Z5cuB0rEhH5eTreEpF4pOwS6Zq2uqnxxaRJHDNuHL2Ki/EmJfHmW291WG7bNjffeitFffqQlpXFwYcdxqJFizqsU1NTw2lnnEF2fj65BQWcc/75+P3+DuvMnDWLAw48kNTMTPqUlvK3++/fpJb/vP46g4cNIzUzkxGjRvH+Bx9s7eaIiIjIZgTCFrd9sBCAk0d1pyQniUX1i3hl8WsAXDXkcrxfP4i5biF2Yjah0bfGslwRERERERER2UlsdVOjubmZQQMH8sB99212+d/uv5/Hxo/n4Qcf5IsJE/D5fBx21FG0trZG1/nDmWcyd+5c3nnzTV5/9VUmffkl5190UXR5Q0MDhx1xBD169ODrL77gzttu47Y77uCpZ56JrvP1N99w6umn84fTTuPbL7/k8MMOY9wJJzB79uyt3ST5keJevWJdgojIVlFubXv//HYlS9e1kOVzcdE+Rdi2zd1T/0bYDrN/wX7sbjlxfDcegNDYuzQkjshWUm6JSLxRbolIPFJ2iXRNW93UOGjsWG6+8UaOPOKITZbZts0jjz7Kn66+msMPO4xBAwfy9JNPUlFREb2iY968eXz40Uc8/uijjBo5kj332IP7772XV197jdUVFQC89PLLBIJBnnz8cfr378/x48ZxwXnn8dDDD0ff69HHHmPsgQdy+aWXUlZWxk033MCwoUN5/Iknfu2+kHZ1DQ2xLkFEZKsot7atqoY2Hpu4DICrRvch2evk5cWvMqV6Kh6Hh8v7n7Nh2Kn+x2L1/V1sCxaJQ8otEYk3yi0RiUfKLpGuaZvOqbF02TIqq6o4YP/9o8+lpqYycpdd+HbyZAC+mTyZtLQ0RgwfHl3ngP33xzRNvvvuu+g6e+25J263O7rOmNGjWbBwIbW1tdF1Nn6f9eusf5/NaWtro6GhIXprbGz87RvdBVWvWxfrEkREtopya9u6++PFNActhnVP4YjBuby48GXunRa5QvOsfmfSfcpzmDWLsX25hA64JcbVisQn5ZaIxBvllojEI2WXSNfk3JYvVlVVBUBOTk6H53NzcqLLqqqqyM7O7liE00lGenqHdYp69tzkNdYvS29fN+dHr7Px+2zO3ffey+133rnJ89NmzsTn8zFk4EAWLFpES2sryUlJ9CgsZPbcuQAUFhRg2TarVq8GYFD//ixZvpympiYSExPp06sXM9uHvirIz8d0OChfuRKAAWVllK9aRUNjIwleL6V9+zJt5kwA8nNz8Xg8LFuxAoB+JSVUVFZS19CAx+1mQL9+TJk+PbJ92dn4fD6WLFsGQGlxMWurq6mpq8PpdDJk4ECmTp+OZdtkZWaSlpLCoqVLASju3Zu6ujqqa2owTZNhgwczfeZMQuEwGenpZGVmsqB97pNQKET5ypWsqa4GYMTQocycPZtAMEhaaip5ubnMW7AAgKIePWhtbaVyzRoAhg4axLwFC2htayMlOZnuBQXMmTcPgB7duxMKhVhdWQnA4IEDWbR4Mc0tLST5fBT16MGs9v3dvVs3AFa27++B/fqxbMUK/E1NJCYkUNynDzNmzQKgW14eTqeTFe37u39ZGSvb97fX46GspCS6v/NycvB6vdH9XVZSQmVVFXX19bhdLgYNGMAP06YBkJOVRVJSUnR/lxQXU71uHTW1tTgdDoYMGsTUGTOwLIusjAzS0tKiE1AV9+pFXUMD1evWYRoGw4YMYfqsWYRCITLS0sjOymJ++/7uXVREU1MTVWvXAjB8yBBmz51LWyBAWkoK+Xl5zN1of7e1tVHR/jkfOmgQ8xcupKW1lZTkZAoLCpjdvr8Lu3fHCodZ1X4F1KABA1i8dCnNzc34fD569+zJzDlzIp/Zbt0wDYPyVasin9l+/VhRXk6j30+C10tJcTHT2/d3fl4ebpeL5eXlkc9saSmrKyqob2jA4/HQv7SUqTNmRD6zOTkkJiSwdPnyyGe2b1/WrF1LbV0dLpeLwQMGMGX6dGzbJjsri5TkZBa3f2b79ulDTW0t62pqcDgcDB00iGkzZxIOh8nMyCAjPZ2FixcD0KdXLxoaG1lbXY1hGAwfMoQZs2cTDAZJT0sjJzub+QsjcwP06tmT5pYWqto/s8MGD2bO/Pm0tbWRmpJCt/x85s6fD0DPwkICwSAV7Z9ZZcSGz6zf7+9UGWHbNvMXLlRGbIOM+HZ5PW/PbsIAxvW2uOOzu/hvzX8BGJs2lt0rHDi+fxKAeX3PpXV5FSXFycoIlBGdOSM643GEaRhxmRE6jlBGKCN23uMI27Ki9SsjlBHKCGVEvBxH1Dc08MO0acoIZYQyIk4ywrZttoTR6vdv2Zqb4U1K4pUXX+SIww8HIvNc7D9mDEsXLSI/Ly+63kmnnIJhGDz/3HPcdc89PP/vfzNz6tQOr1VYVMT1113H2WedxaFHHEFRz548utFwU3PnzmXYyJFM+/57ysrKSE5P56knnuD3xx8fXeeJJ5/k9jvvZEX7P4ofa2tro62tLfq4sbGRPqWlrFm9mpSUlF+7G0RERLqEWRWNnPavafjbwpwwPJ+8nhN4et6zAJzd/4+cVXwi7ucOwqxdQnjA8YQOeSC2BYuIiIiIiIhIl9HQ0EBOt26/eL5+mw4/lZubC8Ca9g7YelVr1kSX5ebmsra9u7NeKBSipra2wzprfrTO+i7mL62zfvnmeDweUlJSorfk5OSt3cSdwvoOuIhIvFBu/Xbzq/yc+cJ0/G1hdumRQnK396MNjYsGXcDZ/f+Ic9LdmLVLsJPyCB1wc4wrFolvyi0RiTfKLRGJR8ouka5pmzY1ehUVkZeby2cTJkSfa2ho4Lvvv2fXUaMA2G3UKOrq6piy0ZUan33+OZZlMXLkyOg6k778kmAwGF3nk88+o6RvX9LT06PrbPw+AJ9+9ln0feTXC4VCsS5BRGSrKLd+myXVzZzxwnTqWkIMLvDRb8BHvLT4RQCuGnoFp5WegrHiKxw/PAVA6KB7wZsay5JF4p5yS0TijXJLROKRskuka9rqpobf72f6jBlMbx+jbtny5UyfMYMV5eUYhsGFF1zAX+++m7ffeYdZs2Zx5tlnk5+fHx2iqqysjLEHHsj5F17Id99/z1dff81lV1zBuOOOo1t+PgC/P/543C4X55x/PnPmzOHV117j0cce4+KLLorWccH55/PhRx/xwEMPMX/+fG69/XZ+mDKF8845Z1vsl51aRlparEsQEdkqyq1fr7y2hT88P43qpiD9cpPYf+QM/rvsDQwM/jLiWn5fPA7qluN68ywMbMKDTsDqfUCsyxaJe8otEYk3yi0RiUfKLpGuaavn1Ph84kQOOuSQTZ4/+aSTeOqJJ7Btm1tuu41nnn2Wuvp69th9dx66/3769u0bXbempoZLr7iCd997D9M0OerII7nvnntISkqKrjNz1iwuuewyfpgyhazMTM4791yuvPzyDu/5n9df56Zbb2X58uUU9+nDHbfdxu8OOmiLt2VLx+ja2fj9/g7/LUREOjvl1q9T2dDKSf+cxsq6VoqzEnno9z04feL/0Rxq5trh13Bs76OhrQHXC4djrluIlTeE4An/AVdirEsXiXvKLRGJN8otEYlHyi6R+LKl5+t/00Th8U5Njc37Ydo0RgwdGusyRES2mHJr61X7A5z0z6ksq2mhZ0YCz586lH8sephXFr9G//T+/POApzHsMK7/nIK57HPspHwCp7wDSXmxLl2kS1BuiUi8UW6JSDxSdonEl5hMFC4iIiKdn23bXPO/uSyraaFbqod/nDyEgLGW/yx5A4CLB12AYRg4P70x0tBwJRA85h9qaIiIiIiIiIhIzKmpIZvoXVQU6xJERLaKcmvrvDmziklLanE7DJ46cTDdUr08PvtJwnaYPXJ3Y5ecEZhTnsUx9VkAQoc8gp07KMZVi3Qtyi0RiTfKLRGJR8ouka5JTQ3ZRFNTU6xLEBHZKsqtLVfTHODOjxYDcME+RfTJ9jGvdh4flH8YeW7Q+RhLJ+D89AYAQvv8Gavk4JjVK9JVKbdEJN4ot0QkHim7RLomNTVkE1Vr18a6BBHpIoJWkDk1c2kMNG7X91Fubbm7PlpMbXOQkmwfZ+xeCMDDMx8D4OAeB1EWAteb52DYYcIDjic86oJYlivSZSm3RCTeKLdEJB4pu0S6JmesCxARkfjWGgwzftIKXp6ymvwUD7v28pGWuZgVge/4svJL/EE/btPN3vl7cXDP37Fn3u64TFesy94pfbmkhv/OqMIAbj2sBLfD5NuqyXy7ZjJOw8m5PY7A9eqJGIFGrO67Ehp7FxhGrMsWEREREREREYkyWv1+O9ZFxMqWzqa+s7FtG0MnsURkC3y+cB23vL+QlXXNOJNn4kyZgTNpAYYZjK7jMjwE7bbo41R3Cgd2H8PBPX5H37RiEhwJvylzAuEAzaHm6GvYm/xf7Zf+N7fhvdeXYWz8XPvPHWuM/Jzg9OIwHL+i6h2vJRjm8Ce+o7y2lZNHFnD97/pi2RanfXoGc2vncWLPI/jT9Hcxa5dgZfYleMLrkJgZ67JFuiwdb4lIvFFuiUg8UnaJxJctPV+vKzVkE7PnzmVg//6xLkNEOrGK+lbu+HARH86rBmzSe7xFyPf1hhVC6YTr+3F8cyV/Dn7OUo+Tt5J8vOtLZC0NvLbkdV5b8joAhg0ew4nX8OAyE3E5U8j29qB3Uhn90gdQmlpMWoKXJI8Dp8MgZIWYXzePH6q/54e13zOrZhYhOxST/ZDqTuGIosMZ1+dYuvm6xaSGLfXI58sor20lL8XDZfv3AuDjlZ8wt3YePmciZ8/5BLN2CXZKd4LjXlRDQ2Q70/GWiMQb5ZaIxCNll0jXpKaGbKItEIh1CSLSSYUsi39+u5JHPl9Gc9DCYcCooVOZ1fo1BganlJzE2MIxlLQF4a2LSAgtAANKA0FKa+q4rKaOb71e3k7y8YkvgWbTxDaglRCtdgjCTRBey+q2xUyv/4w3VgGWg3Brd8KtBRiuOpyJizEcbb9Y645QH2jgXwte4IUFL7J3t704vs9xjMoZ2em+CTS3spFnvykH4Ibf9SXJ4yRoBXls1hMAnNZmkrVmDnZiFsHjX4Lkzt2gEekKdLwlIvFGuSUi8UjZJdI1qakhm0jTUFwishm2bXP92wt4fXolACMKUxkzYgWPzX8FgCuHXs7vex+D47vHcUy6B8MKYidmEjroXqw+B9LU3ET52jpq1tZRtK6OI2rWkdi2kvTQclKslSSGK0m01hA0WlngdjHd42Gmx02DAxyJy3EkLo/WkhA26d3ipqTZTVmLg+7BIMlGMym0kGI0kUwLLiPMpgNG/WibNvPz5p7b3O9YhsHXCV7+nZXHN44wn6+eyOerJ1KU3JO98/eiNdyGP+jHH2ykMeCnMeinNdza4VXs9rGy7PWPN9rXHdbDjg6rZdPxd/iF17CxaWwNkVBs43Ia3D7Pwe3zIGyHaQo1kYmD08rnYruTCR73b+z03pvZahHZ1nS8JSLxRrklIvFI2SXSNampIZvIz8uLdQki0gk9/PkyXp9eicOAmw4poahgNRdPugeAU0pO4vdZo3C9dCzmqskAhIsPIjT2HvBlAeDzJVPmS6asqPDn36h5Hfus/gFj1XcYqyazomo2s1wwx+0mM2yxe0srZYEAHWay+IVpLWzDBMMEwxG5Nx0/+tnEMBxgbDSbxkaTcwTCFi2BMG0hK9o0MGybfZvr2H/FUpa4nLyYksz/kpJY1ricZY3Lf1xCbLVvfghoCHZcdMnaNSQ4PASPfQ47d2BMyhPZGel4S0TijXJLROKRskuka1JTQzYxd8ECRgwdGusyRKQTeXVqBY9+ETlRf9MhJQzv08IfJ/yJkB1iTPfRXJw2HPc/xmAEm7DdSYQOuAVr4O83zLy9NRIzsYrHQvFYALqF2iiomsnBFVMg2AymE9t0Emq/x3SydPVaepUOxvakgCcleo/T297M+G3DQRlAImC1hfhg7lr+O6OKycvryKSe/R3TGBOewmWBGVxSU8fbST6WulwkWRYplkVy+81jmWC5MLExAGOz9zaGTfSxGb1ZOAw7WsvG9+u7LD9+fsN9x9/beJsSLJtc2yB09LPY3Xf9TftIRLaOjrdEJN4ot0QkHim7RLomNTVERORnTVy0jhvfmQ/AuXv1YP9+Lv7w6Xn4g36GZA7m5tI/4nnhcIxgE1bBKIKHPgypv3A1xtZwerALdiFcsMtPrlJtT6Nn76Hb7j1/QpLHybFD8zl2aD4V9a0sr23BYB8AplgB0tZ8y76rP+Pg+oW4QvU4A/U4A3WY1vafyNzGiDRwNjvQ1k887U0jNPp2rN6jt2dpIiIiIiIiIiLbjJoasomiHj1iXYKIdBJzKhq55D9zCNtw1OBcztozh7Mnnk9VSxU9k3vyt11vJek/p2O01GDlDCA47kVwJezwOmORW/mpXvJTvR2f7H0EcET0oQ0EbTtyhUlrLUagecNVI0bkegyMDddqRJ9bv9ww2ofJWj9UVvsQWu1DZm342fGbr0YRkR1Lx1siEm+UWyISj5RdIl2Tmhqyiba2tliXICKdwKq6Vs5+aSbNgTB79ErnlkNL+Mt317GgbgEZnnQe3PM+sr64B7NyGrY3neBRz8SkoQGdPLcMA9w+cPs2O/G4iOycOnVuiYhshnJLROKRskukazJjXYB0PhVVVbEuQURirL4lyFkvzmCtP0BJjo+HjhvAa0te4bNVE3AaTv62xz30WPwZjhn/xjZMgoc/tm2HnNpKyi0RiTfKLRGJN8otEYlHyi6RrklNDRER6cCyba7871wWVzeTm+zm7ycOYrF/Ng/NfASAy4ZcwuC2NpwfXwdAeO9rsIv2jWXJIiIiIiIiIiKyk9DwU7KJoYMGxboEEYmhx79YzsRFNXidJk+eMBi3u5lrJ/6FsB1mbOGBHJ+3L65/HYxhBQn3PZjwqAtjXbJyS0TijnJLROKNcktE4pGyS6Rr0pUason5CxfGugQRiZFJi2t4+PNlANx0SAl9cxO47tsbWNu6ll7JRfxl6JW43z4Pw1+BlVFM6OAHOsUE1cotEYk3yi0RiTfKLRGJR8ouka5JTQ3ZREtra6xLEJEYWF3fyhVvzMEGfj88n6OH5PHE7L/z3drvSXAkcNdud5Dy+R2Y5V9ju5MIHfU0eJJjXTag3BKR+KPcEpF4o9wSkXik7BLpmtTUkE2kJHeOk5QisuMEwhaX/mc2dS0hBuQlcd1BxUyq+JJn5v0DgOtGXEvfOW/hmP4vbAxChzyEndk3tkVvRLklIvFGuSUi8Ua5JSLxSNkl0jWpqSGbKCwoiHUJIrKD3fXRYqavaiTV6+TB4wawrq2KGybfDMC4PsdxSEMdzkl3ARAafRtW39/FstxNKLdEJN4ot0Qk3ii3RCQeKbtEuiY1NWQTs+fNi3UJIrIDvTWziue/WwXA3Uf1IymxlYsmXUZDsIEB6f25PGUozg+uBCA06gKs4afHstzNUm6JSLxRbolIvFFuiUg8UnaJdE3OWBcgIiKxM7/Kz/XvzAfg3L16MLLIy3kTL2R543JyE3K5p+9p+F7/I4YVItzvGML7XBvjikVEREREREREZGempoZsorB791iXICI7wMzVDZz14kxagha790rj3L0KuOLrK5lTO5dUdyqPDruW7v89FyPYhNVjL0IH3wdG57zAT7klIvFGuSUi8Ua5JSLxSNkl0jWpqSGbsMLhWJcgItvZt8tqOfflWTQHwgzqlsy9R5dx8w+3MHnNdyQ4EnhoxI30fe8qjKY1WNn9CR71FDjcsS77Jym3RCTeKLdEJN4ot0QkHim7RLqmzvmVW4mpVRUVsS5BRLajT+ZX88d/z6A5EGa3ojSePWkwT81/iI9XfoLTcHJft0MY9sZZmDWLsZO7ETz2X+BJiXXZP0u5JSLxRrklIvFGuSUi8UjZJdI1bfOmxq233443KanDbfCwYdHlra2tXHLZZXTr0YPM3FxO+L//o6qqqsNrrCgv56hjjyU9O5vCoiKuve46QqFQh3U+nziR3fbck5SMDPoPHsxzzz+/rTdFRGIobIcJWaHoLWyHsWwL27ZjXVpc++/0Si56dRaBsM2Y0iyePHEQ/178D15b8joGBneG0thr4v0YLbVYWf0IjnsRkvNjXbaIiIiIiIiIiAiwnYaf6t+vH+++/faGN3E4oj9fdc01vPfBB7zw3HOkpqZy2RVX8PuTTmLCxx8DEA6HOfrYY8nNzWXCJ59QWVnJmWedhdPl4tabbgJg6bJlHH3ccZx15pn84+mn+WzCBM674ALy8/I4cMyY7bFJO4WXFr3C/5a+iWVb8KEBgM36E8iRe9u2o89Fl9gb1okus9nk99ev91O/73V6SXL68Ll8JLmS2m8+chKy6e7rToGvG92TupPgTNjWm/6TbNumOdRMY9CPP9hIY8BPm9WGw3BgYGAaJqZhYGAStILUB+ppCDRQH2iI/twSbsXAwAAMw4D2R4bR/hwGGEb760XX7LB8/e9tVFn0J6fhpJuvG4VJ3emeFNlPLtP1s9sVtIKsbqqg3F9OuX8lK/zlVDVXYWNHtgkD03BE6jFMHIaJgbnJ40hdERtXZ2z0aON11u/TyBZs+Bw0BZs67LuGQAONwcZf/O9jbLQvOzxnRJd0LGwnF7ZsgmGbhBJwmAbTHAYHvAVt4TYA/lzTwO/ql2M7vYT3uJzwLueA4+c/S53FoAEDYl2CiMhWUW6JSLxRbolIPFJ2iXRN26Wp4XQ6ycvN3eT5+vp6/vHcc/zzmWfYf7/9AHjy8ccZMmIE306ezK6jRvHxJ58wd9483n3rLXJzcxkyeDA3Xn89191wA9f/+c+43W6eevppinr25K477wSgrKyMr77+moceeURNjd/g+znfsDCwKNZl/KJMTwYFSQX4nL7ot/c3voXtMBYbP7aw7DCWbbO+8WLb60+q29FGjWV3vAXCbbSEm7CwYr3JW8XEJC8xl7zEPCzbojkYpDUUuQXCIdqsVlrsdWzcGIlX9vpG2o83Jf43bbtZP8+3BbS1Dy1q2nBhbR0n1Ddg9dyH4IF/hfSiWJX4qyxeupR+JSWxLkNEZIspt0Qk3ii3RCQeKbtEuqbt0tRYtHgxvYqL8Xi97DpqFLfefDM9CguZMnUqwWCQA/bfP7puaWkphYWF0abGN99+y8ABA8jdqCkyZswYLrr0UubMncvQIUP45ttvO7zG+nWuuuaan62rra2Ntra26OPGxl/+JvjOZHRDiBNr1wBgYEe/4L7xfcdv47ff2xsvtzss+/Hvr1//x88BNJsGftPEbxo0GiZ+06TRNKl0Oih3OSl3OmlwOFjXVsO6tprftK1by2GDLwxJlo3bbm+HGBuuTbENcNo26VaYtHCYVMuK3MIWifaGKxLWt0c2/P76m7FhnY2ep33Z+sebu+igzTBY6XKywulkhctJiwmrmytY3fzz40a6LcgPQs9ggL6hFrqFwjhtG8sACwMLCBuR97faa//xss2xN6rS7vD8jz9LG5YmWXb7/tqw71LCFs7oOsZG+2qj/WNsfj+tf7/1+1gXa/y8RMsm1ZNG8JCHsfofA0b87bHm5uZYlyAislWUWyISb5RbIhKPlF0iXdM2b2qMGjmSv48fT0lJCZWVldx+552MHjuWKZMnU7VmDW63m7S0tA6/k5uTE51Xo6qqipycnE2Wr18GULVmzWbXaWhooKWlhYSEzQ9PdPe993J7+9UdG5s2cyY+n48hAweyYNEiWlpbSU5KokdhIbPnzgWgsKAAy7ZZtXo1AIP692fJ8uU0NTWRmJhIn169mDl7NgAF+fmYDgflK1cCMKCsjPJVq2hobCTB66W0b1+mzZwJQH5uLh6Ph2UrVgDQr6SEispK6hoa8LjdDOjXjynTp0e2MTsbn8/HkmXLACgtLmZtdTU1dXU4nU6GDBzI1OnTsWybrMxM0lJSWLR0KQDFvXtTV1dHdU0NpmkybPBgps+cSSgcJiM9nazMTPJSSkgL7I1hGLicLgLBAACpKSk0+P3Ylo3L5cLjceP3NwGQkJiIFQ7TFtiwrt/vx7IsnE4XCQleGhv9kXUTErBti6bWNsIWJPp8NDa1EAyFsduHWjKb/SSHAiRbQZxWAK8RJJN68o0avEaQetNgpdPJSqeTgGlg2pGJYUzbxsH6n8Ek8tiwwYEdfX79yfQfN2oMe+OmTWS5x7ZJtmxSLAuPbW/1ifEwTtpMD2FcGA4nISvSEMB0YJgOQmEbyzAxHU7CtkHYAtswcLrckTlkbBvDMHA4HIRCwcjVJYZBMGwTCocJtXdI3ITINupIM5qwgXUOk3KnkyqnE8O2cQKu9nuHbeOxbQpCIbLCVodtsjAJGB5Chgvb4SGIgyBOwoYLp8tFKBjCMMDpiAw7FQ6HwQany0koFMKyIjvR4XASDEbmwDEdJiaRYeUAXC4n2BbYNg4DErweAm2thB0eTG8yhjeFhgCEHAmE03NpClq0tLZhmCbZ2TmsqV6HZYM3IQGvN5GaunoA0tMzaA0EaG5uwTAM8nJzqVq7Fiscxuv14vMlsm5dpBGWlpZGMBikqSnyGc7Ly2Vt9TrCoRBej5ukpGSq162Lfp4tK0xj++c9NyebmppagqEQbreLtJRU1lRXR9ZNTsJmQ7M0Jzub2ro6gsEgTpeLjLQ01qxdC0ByUhKGadDQEFk3OzOThsYG2gIBnE4nmRkZVK2JNBiTfD4cDif1DZFtzcrIwO9vojXQhsN0kJ2VRWVVJQC+xETcbje1dXUAZGZk0NzcTEtrK6Zp0j0/l5q1Vdg2+HyJeL1e1q2rodXhJjjqFGrbDKqnT//JjFiwKHIlV++iIvx+f3TbRwwdyszZswkEg6SlppKXm8u8BQsAKOrRg9bWVirbt2fooEHMW7CA1rY2UpKT6V5QwJx58wDo0b07oVCI1ZWR7Rk8cCCLFi+muaWFJJ+Poh49mNWeyd27dQNgZXsme71e5i9ciL+picSEBIr79GHGrFkAdMvLw+l0sqI9k/uXlbGyPZO9Hg9lJSXRTM7LycHr9UYzuaykhMqqKurq63G7XAwaMIAfpk2L/DfOyiIpKSmaySXFxVSvW0dNbS1Oh4MhgwYxdcYMLMsiKyODtLQ0Fi1ZAkBxr17UNTRQvW4dpmEwbMgQps+aRSgUIiMtjeysLOZvtL+bmpqoav/8DB8yhNlz59IWCJCWkkJ+Xh5zN9rfbW1tVLT//3LooEHMX7iQltZWUpKTKSwoYHb7/i7s3h0rHI5OnDdowAAWL11Kc3MzPp+P3j17MnPOHAAKunXDNAzKV60CYEC/fqwoL6fR7yfB66WkuJjp7fs7Py8Pt8vF8vJyAPqVlrK6ooL6hgY8Hg/9S0uZOmNG+7+pHBITEli6fDkApX37smbtWmrr6nC5XAweMIAp06dj2zbZWVmkJCezuP3/a3379KGmtpZ1NTU4HA6GDhrEtJkzCYfDZGZkkJGezsLFiwHo06sXDY2NrK2uxjAMhg8ZwozZswkGg6SnpZGTnc38hQsB6NWzJ80tLdF/g8MGD2bO/Pm0tbWRmpJCt/x85s6fD0DPwkICwSAV7Z/Znf04ojNnxMB+/Vi2YkWnygifz6eMQBmhjFBGxNNxhMfjidavjFBGKCOUEfFyHOFvauKHadOUEcoIZUScZMSWzqVrtPr923Wglrq6Okr69+euO+8kISGBs889l4aajt+y32vffdl3n324/dZbOf/CC1lRXs7b//tfdHlzczMZOTn87/XXOWjsWAYOHcqpJ5/M1VdeGV3n/Q8+4Khjj6V27dqfbGps7kqNPqWlrFm9mpSUlG285fErEAjgdrtjWoNt2zS0hqiob6MtHDkJ7gzU4W6uwt1cibu5EkeoCcMKYloBjHD7vRXAsO32JkmkfWEY7W2M9fNS/OjeNE1cTgdup4nLYbaPz2NE5hJwJ2G7fOBKALcv8rPTA4YDTEdk3fU/O1zYrkRwJoArcbvPRRCyLKoaAlQ3BbBtGyPUirt1La6WNbhb1uBuqyHVZeFzhDHCAbCCEAqAHQZfNrYvBzspD3w52Em5kJC+YWwikTjTGXJLRGRrKLdEJN4ot0QkHim7ROJLQ0MDOd26/eL5+u0y/NTG0tLS6FtczOIlSxi9//4EAgHq6uo6XK1RtWZNdLip3Nxcvv/hhw6vsb6DGV0nJ4c17c9tvE5KSspPNjQAPB4PHo9nW2xWlzZzzhxGDB0a0xoMwyA1wUVqwsaNgVSg53Z93/B2ffVty2maFKR5KUjztj+TCmw6l018zQgi8ut0htwSEdkayi0RiTfKLRGJR8ouka5pu38t2+/3s2TpUvJzcxk+bBgul4vPJkyILl+wYAHl5eXsOmoUALvtuiuzZs/u0LT45NNPSUlJoV9ZWXSdjV9j/TrrX0NERERERERERERERLqebd7U+NOf/8zEL75g2fLlfP3NNxx/4ok4TJPjx40jNTWVP5x6Kldfey0TPv+cKVOncvZ557HbrrtGGxJjRo+mX1kZZ5x1FjNmzuSjjz/m5ltu4Zyzz45eZfHHM89k6bJl/Pkvf2H+/Pk88eST/Of117n4wgu39ebslArax4YTEYkXyi0RiTfKLRGJN8otEYlHyi6RrmmbDz+1atUqTjv9dNbV1JCdlcUeu+/O5599RnZ2NgD33HUXpmly4skn09bWxoGjR/PgAw9Ef9/hcPD6a69x8aWXsu8BB+BLTOTkk07ixr/8JbpOr6Ii3njtNa7+05945LHHKCgo4PFHH+XAMWO29ebslExja6fEFhGJLeWWiMQb5ZaIxBvllojEI2WXSNe03ScK78y2dOKRnc0P06ZpvEERiSvKLRGJN8otEYk3yi0RiUfKLpH4sqXn67f7nBoiIiIiIiIiIiIiIiLbgpoasokB/frFugQRka2i3BKReKPcEpF4o9wSkXik7BLpmtTUkE2sKC+PdQkiIltFuSUi8Ua5JSLxRrklIvFI2SXSNampIZto9PtjXYKIyFZRbolIvFFuiUi8UW6JSDxSdol0TWpqyCYSvN5YlyAislWUWyISb5RbIhJvlFsiEo+UXSJdk5oasomS4uJYlyAislWUWyISb5RbIhJvlFsiEo+UXSJdk5oasonps2bFugQRka2i3BKReKPcEpF4o9wSkXik7BLpmpyxLiCWbNsGoLGxMcaVdC5NTU00NDTEugwRkS2m3BKReKPcEpF4o9wSkXik7BKJL+vP068/b/9Tduqmhr99sqA+paUxrkRERERERERERERERPx+P6mpqT+53Gj1+3++7dGFWZZFRUUFSUlJGIYR63I6hcbGRvqUlrJ4/nySk5NjXY6IyC9SbolIvFFuiUi8UW6JSDxSdonEH9u28fv95OfnY5o/PXPGTn2lhmmaFBQUxLqMTik5OZmUlJRYlyEissWUWyISb5RbIhJvlFsiEo+UXSLx5eeu0FhPE4WLiIiIiIiIiIiIiEhcUFNDRERERERERERERETigpoa0oHH4+G6a6/F4/HEuhQRkS2i3BKReKPcEpF4o9wSkXik7BLpunbqicJFRERERERERERERCR+6EoNERERERERERERERGJC2pqiIiIiIiIiIiIiIhIXFBTQ0RERERERERERERE4oKaGiIiIiIiIiIiIiIiEhfU1JCo8U88QUn//qRmZrL3fvvx3fffx7okEREAbr39drxJSR1ug4cNiy5vbW3lkssuo1uPHmTm5nLC//0fVVVVMaxYRHZGX0yaxDHjxtGruBhvUhJvvvVWh+W2bXPzrbdS1KcPaVlZHHzYYSxatKjDOjU1NZx2xhlk5+eTW1DAOeefj9/v35GbISI7kV/KrT+ec84mx2CHH3VUh3WUWyKyI919773suc8+ZOXlUVhUxLgTTmDBggUd1tmSvw9XlJdz1LHHkp6dTWFREddedx2hUGhHboqI/AZqaggAr772Gldfey3XXXst30yaxKCBAzn8qKNYs2ZNrEsTEQGgf79+LFu8OHr79KOPosuuuuYa3nnvPV547jk+ev99Kior+f1JJ8WwWhHZGTU3NzNo4EAeuO++zS7/2/3389j48Tz84IN8MWECPp+Pw446itbW1ug6fzjzTObOncs7b77J66++yqQvv+T8iy7aUZsgIjuZX8otgLEHHtjhGOy5Z5/tsFy5JSI70heTJnHO2Wcz8dNPeeettwgGgxx65JE0NTVF1/mlvw/D4TBHH3ssgUCACZ98wlNPPsm/nn+em2+7LRabJCK/gtHq99uxLkJib+/99mPE8OHRg1nLsiguLeW8c8/lqiuuiHF1IrKzu/X223nr7beZ/PXXmyyrr6+ne1ER/3zmGY45+mgA5s+fz5ARI/j800/ZddSoHV2uiAjepCReefFFjjj8cCBylUav4mIuufhiLrvkEiCSXz169+bv48dz/LhxzJs3j6G77MKXEycyYvhwAD786COOPOYYFi9YQLf8/Jhtj4h0fT/OLYhcqVFfX8+rL7202d9RbolIrK1du5bCXr346P332Xuvvbbo78MPPvyQo487jqULF5KbmwvA3596iutuuIGVy5bhdrtjuUkisgV0pYYQCASYMnUqB+y/f/Q50zTZf//9+Xby5BhWJiKywaLFi+lVXEzZwIGcdsYZrCgvB2DK1KkEg8EOGVZaWkphYaEyTEQ6jaXLllFZVdUhq1JTUxm5yy7RrPpm8mTS0tKiJwYBDth/f0zT5LvvvtvhNYuIAEz84gsKi4oYNGwYF11yCevWrYsuU26JSKw1NDQAkJGeDmzZ34fffPstAwcMiDY0AMaMGUNDQwNz5s7dgdWLyK/ljHUBEnvV69YRDofJycnp8HxuTs4m4xKKiMTCqJEj+fv48ZSUlFBZWcntd97J6LFjmTJ5MlVr1uB2u0lLS+vwO7k5OZpXQ0Q6jfV5tLnjrfXLqqqqyM7O7rDc6XSSkZ6uPBORmBg7ZgxHHXEERT17smTpUm646SaOPOYYPv/0UxwOh3JLRGLKsiyuvOYadt99dwYMGACwRX8fVlVVbfaYbP0yEen81NQQEZFO76CxY6M/Dxo4kJG77EJJ//689vrrJCQkxLAyERERka7r+HHjoj8PHDiQgQMH0n/QID6fOLHDt6BFRGLhkssuY/acOR3mWxSRnYOGnxKyMjNxOBybTApetWZNh0vxREQ6i7S0NPoWF7N4yRJyc3IIBALU1dV1WEcZJiKdyfo8+rnjrdzcXNauXdtheSgUoqa2VnkmIp1C7169yMrMZPGSJYByS0Ri59LLL+fd99/ng3ffpXtBQfT5Lfn7MDc3d7PHZOuXiUjnp6aG4Ha7GT5sGJ9NmBB9zrIsJkyYoAl2RaRT8vv9LFm6lPzcXIYPG4bL5eqQYQsWLKC8vFwZJiKdRq+iIvJycztkVUNDA999/300q3YbNYq6ujqmTJ0aXeezzz/HsixGjhy5o0sWEdnEylWrWFdTQ35eHqDcEpEdz7ZtLr38ct586y0+eOcdehUVdVi+JX8f7rbrrsyaPbtDY+OTTz8lJSWFfmVlO2IzROQ30vBTAsDFF17IH885h+HDhzNyxAgefvRRmpqbOfXkk2NdmogIf/rznznk4IPp0aMHFRUV3Hr77ThMk+PHjSM1NZU/nHoqV197Lenp6aSkpHD5lVey2667qqkhIjuU3++PfnsZYNny5UyfMYP09HR6FBZy4QUX8Ne776a4Tx+Kevbk5ttuIz8/nyMOPxyAsrIyxh54IOdfeCEPP/ggwWCQy664gnHHHUe3/PxYbZaIdGE/l1sZ6encfuedHHXkkeTm5rJkyRKuu/56+vTpw4FjxgDKLRHZ8S657DJefvVVXn3pJZKSk6lsnwMjNSWFhISELfr7cMzo0fQrK+OMs87ijttuo6qqiptvuYVzzj4bj8cTy80TkS1ktPr9dqyLkM7h8fHjue/BB6mqqmLI4MH87Z57GKVv14hIJ3DKaacx6csvWVdTQ3ZWFnvsvjs33XgjfXr3BqC1tZVrrr2WV157jba2Ng4cPZoHH3iAPF06LCI70OcTJ3LQIYds8vzJJ53EU088gW3b3HLbbTzz7LPU1dezx+6789D999O3b9/oujU1NVx6xRW8+957mKbJUUceyX333ENSUtKO3BQR2Un8XG49/MADjDvhBKZPn05dfT35+fmMOeAAbrz++g7Dsyi3RGRH8v5Etjw5fnz0i7lb8vfh8hUruPjSS5n4xRf4EhM5+aSTuO2WW3A69f1vkXigpoaIiIiIiIiIiIiIiMQFzakhIiIiIiIiIiIiIiJxQU0NERERERERERERERGJC2pqiIiIiIiIiIiIiIhIXFBTQ0RERERERERERERE4oKaGiIiIiIiIiIiIiIiEhfU1BARERERERERERERkbigpoaIiIiIiIiIiIiIiMQFNTVERERERERERERERCQuqKkhIiIiIiIiIiIiIiJxQU0NERERERERERERERGJC2pqiIiIiIiIiIiIiIhIXFBTQ0RERERERERERERE4sL/AxAgkWxQa80zAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "Aabs43nfEUVc"
},
"execution_count": null,
"outputs": []
}
]
}