Code Skripsi
This is full code for prediction of fuel adulteration
This commit is contained in:
62
Concat.py
Normal file
62
Concat.py
Normal file
@ -0,0 +1,62 @@
|
||||
import os
|
||||
import pandas as pd
|
||||
|
||||
# Path folder yang berisi data txt
|
||||
label = 100
|
||||
path = "pertalite_murni/"
|
||||
# path = f"{label}/"
|
||||
|
||||
# Simpan Data
|
||||
myData = []
|
||||
for dir, folder, files in os.walk(path):
|
||||
# Menggabungkan setiap data dalam folder tertentu
|
||||
for file in files:
|
||||
df_temp = pd.read_csv(f"{dir}/{file}", delimiter=';')
|
||||
data_values = list(df_temp.columns)
|
||||
myData.append(data_values)
|
||||
|
||||
# 18 Kolom
|
||||
columns = ['410nm', '435nm', '460nm','485nm',
|
||||
'510nm', '535nm', '560nm', '585nm',
|
||||
'610nm', '645nm', '680nm', '705nm',
|
||||
'730nm', '760nm', '810nm', '860nm',
|
||||
'900nm', '940nm']
|
||||
|
||||
# Simpan ke dalam CSV
|
||||
df = pd.DataFrame(myData, columns=columns)
|
||||
df['Label'] = label
|
||||
df.to_excel(f"Fuel_Ron90{label}_new2.xlsx", index=False)
|
||||
|
||||
|
||||
# import os
|
||||
# import pandas as pd
|
||||
|
||||
# # Path folder yang berisi data txt
|
||||
# label = 100
|
||||
# path = f"{label}/"
|
||||
|
||||
# # Simpan Data
|
||||
# myData = []
|
||||
# for dir, folder, files in os.walk(path):
|
||||
# # Menggabungkan setiap data dalam folder tertentu
|
||||
# for file in files:
|
||||
# df_temp = pd.read_csv(f"{dir}/{file}", delimiter=';')
|
||||
# data_values = list(df_temp.columns)
|
||||
# myData.append(data_values)
|
||||
|
||||
# # 18 Kolom
|
||||
# columns = ['410nm', '435nm', '460nm','485nm',
|
||||
# '510nm', '535nm', '560nm', '585nm',
|
||||
# '610nm', '645nm', '680nm', '705nm',
|
||||
# '730nm', '760nm', '810nm', '860nm',
|
||||
# '900nm', '940nm']
|
||||
|
||||
# # Simpan ke dalam Excel
|
||||
# df = pd.DataFrame(myData, columns=columns)
|
||||
# df['Label'] = label
|
||||
# df.head()
|
||||
# df.to_excel(f"Fuel_{label}_new.xlsx", index=False)
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user