Code Skripsi

This is full code for prediction of fuel adulteration
This commit is contained in:
2025-07-11 06:25:57 +00:00
commit fe7bb529ed
15 changed files with 4226 additions and 0 deletions

22
Combine.py Normal file
View File

@ -0,0 +1,22 @@
import pandas as pd
labels = [100, 90, 80, 70, 60, 50]
df = pd.DataFrame()
for label in labels:
df_temp = pd.read_csv(f"Fuel_{label}_new.csv")
df = pd.concat([df, df_temp], axis=0)
df.to_csv("Fuel_All.csv", index=False)
# import pandas as pd
# labels = [100,90,80,70,60,50]
# df = pd.DataFrame()
# for label in labels:
# df_temp = pd.read_excel(f"Fuel_{label}_new.xlsx")
# df = pd.concat([df, df_temp], axis=0)
# df.to_excel("Fuel_All_External.xlsx", index=False)

62
Concat.py Normal file
View File

@ -0,0 +1,62 @@
import os
import pandas as pd
# Path folder yang berisi data txt
label = 100
path = "pertalite_murni/"
# path = f"{label}/"
# Simpan Data
myData = []
for dir, folder, files in os.walk(path):
# Menggabungkan setiap data dalam folder tertentu
for file in files:
df_temp = pd.read_csv(f"{dir}/{file}", delimiter=';')
data_values = list(df_temp.columns)
myData.append(data_values)
# 18 Kolom
columns = ['410nm', '435nm', '460nm','485nm',
'510nm', '535nm', '560nm', '585nm',
'610nm', '645nm', '680nm', '705nm',
'730nm', '760nm', '810nm', '860nm',
'900nm', '940nm']
# Simpan ke dalam CSV
df = pd.DataFrame(myData, columns=columns)
df['Label'] = label
df.to_excel(f"Fuel_Ron90{label}_new2.xlsx", index=False)
# import os
# import pandas as pd
# # Path folder yang berisi data txt
# label = 100
# path = f"{label}/"
# # Simpan Data
# myData = []
# for dir, folder, files in os.walk(path):
# # Menggabungkan setiap data dalam folder tertentu
# for file in files:
# df_temp = pd.read_csv(f"{dir}/{file}", delimiter=';')
# data_values = list(df_temp.columns)
# myData.append(data_values)
# # 18 Kolom
# columns = ['410nm', '435nm', '460nm','485nm',
# '510nm', '535nm', '560nm', '585nm',
# '610nm', '645nm', '680nm', '705nm',
# '730nm', '760nm', '810nm', '860nm',
# '900nm', '940nm']
# # Simpan ke dalam Excel
# df = pd.DataFrame(myData, columns=columns)
# df['Label'] = label
# df.head()
# df.to_excel(f"Fuel_{label}_new.xlsx", index=False)

BIN
Fuel_All_External.xlsx Normal file

Binary file not shown.

121
Fuel_All_new.csv Normal file
View File

@ -0,0 +1,121 @@
410nm,435nm,460nm,485nm,510nm,535nm,560nm,585nm,610nm,645nm,680nm,705nm,730nm,760nm,810nm,860nm,900nm,940nm,Label
5.781670570373535,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
5.781670570373535,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
5.781670570373535,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
5.781670570373535,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
5.781670570373535,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
5.781670570373535,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
5.781670570373535,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
4.95571756362915,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
4.95571756362915,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
4.95571756362915,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
4.95571756362915,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
4.95571756362915,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
4.95571756362915,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.90084648132324,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
4.95571756362915,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.90084648132324,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
4.95571756362915,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.90084648132324,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,26.90084648132324,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
4.95571756362915,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
4.129764556884766,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
4.129764556884766,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
4.129764556884766,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,100
3.30381178855896,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,2.0441787242889404,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,90
3.30381178855896,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,90
1.65190589427948,0.9738456606864928,10.76567840576172,0.9327982664108276,2.307474136352539,24.659109115600582,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,80
1.65190589427948,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,24.659109115600582,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,80
1.65190589427948,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,24.659109115600582,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,80
1.65190589427948,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,23.16461753845215,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,2.3164284229278564,0.6376231908798218,0.939268171787262,80
2.477858781814575,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,24.659109115600582,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,80
1.65190589427948,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,24.659109115600582,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,80
2.477858781814575,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,24.659109115600582,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,80
1.65190589427948,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,24.659109115600582,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,80
1.65190589427948,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,80
1.65190589427948,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,80
1.65190589427948,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,80
1.65190589427948,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,80
1.65190589427948,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,80
0.82595294713974,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,80
1.65190589427948,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,80
0.82595294713974,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,80
2.477858781814575,0.9738456606864928,12.723074913024902,0.9327982664108276,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,80
2.477858781814575,0.9738456606864928,12.723074913024902,0.9327982664108276,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,80
2.477858781814575,0.9738456606864928,12.723074913024902,0.9327982664108276,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,80
2.477858781814575,0.9738456606864928,11.744377136230469,0.9327982664108276,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,80
3.30381178855896,1.9476913213729856,9.786980628967283,1.8655965328216555,3.845790147781372,28.39533805847168,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,2.0441787242889404,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
3.30381178855896,1.9476913213729856,9.786980628967283,1.8655965328216555,4.614948272705078,28.39533805847168,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,2.0441787242889404,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
3.30381178855896,2.921536922454834,10.76567840576172,2.7983949184417725,4.614948272705078,29.1425838470459,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,2.0441787242889404,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
3.30381178855896,1.9476913213729856,10.76567840576172,1.8655965328216555,4.614948272705078,29.1425838470459,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
3.30381178855896,1.9476913213729856,9.786980628967283,1.8655965328216555,3.845790147781372,28.39533805847168,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
3.30381178855896,1.9476913213729856,9.786980628967283,1.8655965328216555,3.845790147781372,28.39533805847168,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
3.30381178855896,1.9476913213729856,9.786980628967283,1.8655965328216555,3.845790147781372,28.39533805847168,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,2.0441787242889404,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
3.30381178855896,1.9476913213729856,9.786980628967283,1.8655965328216555,3.845790147781372,28.39533805847168,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
3.30381178855896,1.9476913213729856,9.786980628967283,1.8655965328216555,3.845790147781372,27.64809226989746,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
4.129764556884766,1.9476913213729856,9.786980628967283,1.8655965328216555,3.845790147781372,27.64809226989746,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
4.95571756362915,1.9476913213729856,8.808282852172852,1.8655965328216555,3.076632022857666,27.64809226989746,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,2.0441787242889404,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
4.95571756362915,1.9476913213729856,8.808282852172852,1.8655965328216555,3.076632022857666,27.64809226989746,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
4.95571756362915,1.9476913213729856,8.808282852172852,1.8655965328216555,3.076632022857666,27.64809226989746,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
4.95571756362915,1.9476913213729856,8.808282852172852,1.8655965328216555,3.076632022857666,27.64809226989746,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
4.95571756362915,1.9476913213729856,8.808282852172852,1.8655965328216555,3.076632022857666,26.90084648132324,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
4.95571756362915,0.9738456606864928,8.808282852172852,1.8655965328216555,3.076632022857666,26.90084648132324,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
5.781670570373535,0.9738456606864928,8.808282852172852,1.8655965328216555,3.076632022857666,26.90084648132324,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,2.0441787242889404,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
4.95571756362915,0.9738456606864928,8.808282852172852,1.8655965328216555,3.076632022857666,26.90084648132324,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
4.95571756362915,0.9738456606864928,8.808282852172852,1.8655965328216555,3.076632022857666,26.90084648132324,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,2.0441787242889404,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
4.95571756362915,0.9738456606864928,8.808282852172852,1.8655965328216555,3.076632022857666,26.90084648132324,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,70
6.60762357711792,0.9738456606864928,8.808282852172852,1.8655965328216555,1.538316011428833,23.911863327026367,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,23.16461753845215,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,23.16461753845215,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,23.16461753845215,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,8.808282852172852,1.8655965328216555,2.307474136352539,24.659109115600582,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
5.781670570373535,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,24.659109115600582,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,10.76567840576172,1.8655965328216555,2.307474136352539,25.406354904174805,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,10.76567840576172,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
6.60762357711792,0.9738456606864928,10.76567840576172,1.8655965328216555,2.307474136352539,26.153600692749023,0.5287637114524841,0.4831080138683319,1.14484703540802,0.4147160351276397,1.0220893621444702,0.3965269923210144,0.7796502709388733,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,60
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,2.0441787242889404,0.3965269923210144,2.3389508724212646,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,2.0441787242889404,0.3965269923210144,2.3389508724212646,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,2.0441787242889404,0.3965269923210144,2.3389508724212646,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,2.0441787242889404,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,2.3164284229278564,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,1.0220893621444702,0.3965269923210144,2.3389508724212646,0.8432264924049377,1.6491714715957642,2.3164284229278564,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,2.0441787242889404,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,2.0441787242889404,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,2.0441787242889404,0.3965269923210144,2.3389508724212646,0.8432264924049377,2.473757266998291,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,2.0441787242889404,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,1.0220893621444702,0.3965269923210144,1.5593005418777466,0.8432264924049377,0.8245857357978821,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,2.0441787242889404,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,2.0441787242889404,0.3965269923210144,1.5593005418777466,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,1.0220893621444702,0.3965269923210144,2.3389508724212646,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,1.0220893621444702,0.3965269923210144,2.3389508724212646,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,2.0441787242889404,0.3965269923210144,2.3389508724212646,0.8432264924049377,1.6491714715957642,2.3164284229278564,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,2.0441787242889404,0.3965269923210144,2.3389508724212646,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,2.0441787242889404,0.3965269923210144,2.3389508724212646,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,50
4.129764556884766,0.9738456606864928,9.786980628967283,1.8655965328216555,2.307474136352539,23.911863327026367,0.5287637114524841,0.4831080138683319,2.28969407081604,0.4147160351276397,2.0441787242889404,0.3965269923210144,2.3389508724212646,0.8432264924049377,1.6491714715957642,1.1582142114639282,0.6376231908798218,0.939268171787262,50
1 410nm 435nm 460nm 485nm 510nm 535nm 560nm 585nm 610nm 645nm 680nm 705nm 730nm 760nm 810nm 860nm 900nm 940nm Label
2 5.781670570373535 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
3 5.781670570373535 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
4 5.781670570373535 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
5 5.781670570373535 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
6 5.781670570373535 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
7 5.781670570373535 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
8 5.781670570373535 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
9 4.95571756362915 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
10 4.95571756362915 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
11 4.95571756362915 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
12 4.95571756362915 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
13 4.95571756362915 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
14 4.95571756362915 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.90084648132324 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
15 4.95571756362915 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.90084648132324 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
16 4.95571756362915 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.90084648132324 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
17 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 26.90084648132324 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
18 4.95571756362915 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
19 4.129764556884766 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
20 4.129764556884766 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
21 4.129764556884766 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 100
22 3.30381178855896 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 90
23 3.30381178855896 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 90
24 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 90
25 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 90
26 3.30381178855896 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 90
27 3.30381178855896 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 90
28 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 90
29 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 2.0441787242889404 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 90
30 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 90
31 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 90
32 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 90
33 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 90
34 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 90
35 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 90
36 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 90
37 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 90
38 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 90
39 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 90
40 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 90
41 3.30381178855896 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 90
42 1.65190589427948 0.9738456606864928 10.76567840576172 0.9327982664108276 2.307474136352539 24.659109115600582 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 80
43 1.65190589427948 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 24.659109115600582 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 80
44 1.65190589427948 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 24.659109115600582 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 80
45 1.65190589427948 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 23.16461753845215 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 2.3164284229278564 0.6376231908798218 0.939268171787262 80
46 2.477858781814575 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 24.659109115600582 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 80
47 1.65190589427948 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 24.659109115600582 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 80
48 2.477858781814575 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 24.659109115600582 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 80
49 1.65190589427948 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 24.659109115600582 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 80
50 1.65190589427948 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 80
51 1.65190589427948 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 80
52 1.65190589427948 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 80
53 1.65190589427948 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 80
54 1.65190589427948 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 80
55 0.82595294713974 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 80
56 1.65190589427948 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 80
57 0.82595294713974 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 80
58 2.477858781814575 0.9738456606864928 12.723074913024902 0.9327982664108276 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 80
59 2.477858781814575 0.9738456606864928 12.723074913024902 0.9327982664108276 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 80
60 2.477858781814575 0.9738456606864928 12.723074913024902 0.9327982664108276 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 80
61 2.477858781814575 0.9738456606864928 11.744377136230469 0.9327982664108276 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 80
62 3.30381178855896 1.9476913213729856 9.786980628967283 1.8655965328216555 3.845790147781372 28.39533805847168 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 2.0441787242889404 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
63 3.30381178855896 1.9476913213729856 9.786980628967283 1.8655965328216555 4.614948272705078 28.39533805847168 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 2.0441787242889404 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
64 3.30381178855896 2.921536922454834 10.76567840576172 2.7983949184417725 4.614948272705078 29.1425838470459 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 2.0441787242889404 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
65 3.30381178855896 1.9476913213729856 10.76567840576172 1.8655965328216555 4.614948272705078 29.1425838470459 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
66 3.30381178855896 1.9476913213729856 9.786980628967283 1.8655965328216555 3.845790147781372 28.39533805847168 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
67 3.30381178855896 1.9476913213729856 9.786980628967283 1.8655965328216555 3.845790147781372 28.39533805847168 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
68 3.30381178855896 1.9476913213729856 9.786980628967283 1.8655965328216555 3.845790147781372 28.39533805847168 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 2.0441787242889404 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
69 3.30381178855896 1.9476913213729856 9.786980628967283 1.8655965328216555 3.845790147781372 28.39533805847168 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
70 3.30381178855896 1.9476913213729856 9.786980628967283 1.8655965328216555 3.845790147781372 27.64809226989746 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
71 4.129764556884766 1.9476913213729856 9.786980628967283 1.8655965328216555 3.845790147781372 27.64809226989746 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
72 4.95571756362915 1.9476913213729856 8.808282852172852 1.8655965328216555 3.076632022857666 27.64809226989746 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 2.0441787242889404 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
73 4.95571756362915 1.9476913213729856 8.808282852172852 1.8655965328216555 3.076632022857666 27.64809226989746 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
74 4.95571756362915 1.9476913213729856 8.808282852172852 1.8655965328216555 3.076632022857666 27.64809226989746 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
75 4.95571756362915 1.9476913213729856 8.808282852172852 1.8655965328216555 3.076632022857666 27.64809226989746 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
76 4.95571756362915 1.9476913213729856 8.808282852172852 1.8655965328216555 3.076632022857666 26.90084648132324 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
77 4.95571756362915 0.9738456606864928 8.808282852172852 1.8655965328216555 3.076632022857666 26.90084648132324 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
78 5.781670570373535 0.9738456606864928 8.808282852172852 1.8655965328216555 3.076632022857666 26.90084648132324 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 2.0441787242889404 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
79 4.95571756362915 0.9738456606864928 8.808282852172852 1.8655965328216555 3.076632022857666 26.90084648132324 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
80 4.95571756362915 0.9738456606864928 8.808282852172852 1.8655965328216555 3.076632022857666 26.90084648132324 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 2.0441787242889404 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
81 4.95571756362915 0.9738456606864928 8.808282852172852 1.8655965328216555 3.076632022857666 26.90084648132324 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 70
82 6.60762357711792 0.9738456606864928 8.808282852172852 1.8655965328216555 1.538316011428833 23.911863327026367 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
83 6.60762357711792 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 23.16461753845215 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
84 6.60762357711792 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 23.16461753845215 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
85 6.60762357711792 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 23.16461753845215 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
86 6.60762357711792 0.9738456606864928 8.808282852172852 1.8655965328216555 2.307474136352539 24.659109115600582 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
87 6.60762357711792 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
88 6.60762357711792 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
89 5.781670570373535 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
90 6.60762357711792 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 24.659109115600582 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
91 6.60762357711792 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
92 6.60762357711792 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
93 6.60762357711792 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
94 6.60762357711792 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
95 6.60762357711792 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
96 6.60762357711792 0.9738456606864928 10.76567840576172 1.8655965328216555 2.307474136352539 25.406354904174805 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
97 6.60762357711792 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
98 6.60762357711792 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
99 6.60762357711792 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
100 6.60762357711792 0.9738456606864928 10.76567840576172 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
101 6.60762357711792 0.9738456606864928 10.76567840576172 1.8655965328216555 2.307474136352539 26.153600692749023 0.5287637114524841 0.4831080138683319 1.14484703540802 0.4147160351276397 1.0220893621444702 0.3965269923210144 0.7796502709388733 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 60
102 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 2.0441787242889404 0.3965269923210144 2.3389508724212646 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 50
103 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 2.0441787242889404 0.3965269923210144 2.3389508724212646 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 50
104 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 2.0441787242889404 0.3965269923210144 2.3389508724212646 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 50
105 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 2.0441787242889404 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 2.3164284229278564 0.6376231908798218 0.939268171787262 50
106 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 1.0220893621444702 0.3965269923210144 2.3389508724212646 0.8432264924049377 1.6491714715957642 2.3164284229278564 0.6376231908798218 0.939268171787262 50
107 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 2.0441787242889404 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 50
108 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 2.0441787242889404 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 50
109 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 50
110 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 2.0441787242889404 0.3965269923210144 2.3389508724212646 0.8432264924049377 2.473757266998291 1.1582142114639282 0.6376231908798218 0.939268171787262 50
111 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 2.0441787242889404 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 50
112 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 50
113 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 1.0220893621444702 0.3965269923210144 1.5593005418777466 0.8432264924049377 0.8245857357978821 1.1582142114639282 0.6376231908798218 0.939268171787262 50
114 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 2.0441787242889404 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 50
115 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 2.0441787242889404 0.3965269923210144 1.5593005418777466 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 50
116 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 1.0220893621444702 0.3965269923210144 2.3389508724212646 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 50
117 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 1.0220893621444702 0.3965269923210144 2.3389508724212646 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 50
118 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 2.0441787242889404 0.3965269923210144 2.3389508724212646 0.8432264924049377 1.6491714715957642 2.3164284229278564 0.6376231908798218 0.939268171787262 50
119 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 2.0441787242889404 0.3965269923210144 2.3389508724212646 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 50
120 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 2.0441787242889404 0.3965269923210144 2.3389508724212646 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 50
121 4.129764556884766 0.9738456606864928 9.786980628967283 1.8655965328216555 2.307474136352539 23.911863327026367 0.5287637114524841 0.4831080138683319 2.28969407081604 0.4147160351276397 2.0441787242889404 0.3965269923210144 2.3389508724212646 0.8432264924049377 1.6491714715957642 1.1582142114639282 0.6376231908798218 0.939268171787262 50

BIN
Fuel_All_new.xlsx Normal file

Binary file not shown.

File diff suppressed because one or more lines are too long

418
Uji_model_skripsi (1).ipynb Normal file
View File

@ -0,0 +1,418 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "pA16t5i1KdzR"
},
"outputs": [],
"source": [
"import numpy as np\n",
"import tensorflow as tf\n",
"from tensorflow.keras.models import load_model\n",
"import pandas as pd\n",
"from sklearn.preprocessing import StandardScaler, RobustScaler, MinMaxScaler\n",
"import joblib"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "xIsmloYVK0LT",
"outputId": "4e105a41-c4ba-4bd8-9ae8-a5c88ca50f53"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n",
"WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"
]
}
],
"source": [
"# 1. Muat Model yang Telah Dilatih\n",
"model = load_model('model_new.h5')\n",
"model_tuning = load_model('model_tuning_spektroskopi_new.h5')\n",
"\n",
"scaler_X = joblib.load('scaler_X.pkl')\n",
"scaler_y = joblib.load('scaler_y.pkl')\n",
"\n",
"df = pd.read_csv('Fuel_All_External.csv')\n",
"X = df.iloc[:, :-1].values\n",
"y = df.iloc[:, -1].values\n"
]
},
{
"cell_type": "code",
"execution_count": 237,
"metadata": {
"id": "ZyT7wj4SmqZA"
},
"outputs": [],
"source": [
"def inverse_transform_y(predictions):\n",
" return scaler_y.inverse_transform(predictions.reshape(-1, 1)).flatten()"
]
},
{
"cell_type": "code",
"execution_count": 244,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "OSKzZRPp4d00",
"outputId": "ba434853-5829-4c32-d109-df931e3a1b80"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Shape X sebelum transform: (50, 18)\n",
"Scaler di-fit dengan jumlah fitur: 18\n"
]
}
],
"source": [
"print(\"Shape X sebelum transform:\", X.shape)\n",
"print(\"Scaler di-fit dengan jumlah fitur:\", scaler_X.n_features_in_)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "M6m-JLHv1Srz",
"outputId": "d2bbefff-314a-4f7a-de7b-c30dd2c51946"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 130ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 60ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 61ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 53ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 73ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 65ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 63ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 52ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 38ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 45ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 44ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 40ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 47ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 46ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 41ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 39ms/step\n"
]
}
],
"source": [
"X = df.iloc[:, :-1].values\n",
"y = df.iloc[:, -1].values\n",
"\n",
"X = scaler_X.transform(X)\n",
"y = scaler_y.transform(y.reshape(-1, 1)).flatten()\n",
"\n",
"# print(X.shape)\n",
"# print(y.shape)\n",
"y_preds = []\n",
"y_preds_tuning = []\n",
"for i in range(len(df)):\n",
" # print(f\"Data {i+1}: X = {X[i]}, y = {y[i]}\")\n",
" X_pred = X[i].reshape(1, 18, 1)\n",
" y_pred = model.predict(X_pred)\n",
" y_pred = inverse_transform_y(y_pred)\n",
" y_pred_tuning = model_tuning.predict(X_pred)\n",
" y_pred_tuning = inverse_transform_y(y_pred_tuning)\n",
"\n",
" y_preds.append(y_pred)\n",
" y_preds_tuning.append(y_pred_tuning)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9QsKHVhsANkK"
},
"source": [
"#Tanpa Tuning"
]
},
{
"cell_type": "code",
"execution_count": 248,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "LaACsdQj74wD",
"outputId": "bc88a503-f808-4348-f353-e67c09bdc97c"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data 1: Prediksi = [84.23407]\n",
"Data 2: Prediksi = [84.23407]\n",
"Data 3: Prediksi = [84.23407]\n",
"Data 4: Prediksi = [84.23407]\n",
"Data 5: Prediksi = [84.23407]\n",
"Data 6: Prediksi = [84.23407]\n",
"Data 7: Prediksi = [84.23407]\n",
"Data 8: Prediksi = [84.23407]\n",
"Data 9: Prediksi = [90.308846]\n",
"Data 10: Prediksi = [90.308846]\n",
"Data 11: Prediksi = [80.63012]\n",
"Data 12: Prediksi = [80.63012]\n",
"Data 13: Prediksi = [80.63012]\n",
"Data 14: Prediksi = [80.63012]\n",
"Data 15: Prediksi = [80.63012]\n",
"Data 16: Prediksi = [80.63012]\n",
"Data 17: Prediksi = [80.63012]\n",
"Data 18: Prediksi = [80.63012]\n",
"Data 19: Prediksi = [80.63012]\n",
"Data 20: Prediksi = [80.63012]\n",
"Data 21: Prediksi = [71.96156]\n",
"Data 22: Prediksi = [71.96156]\n",
"Data 23: Prediksi = [70.68844]\n",
"Data 24: Prediksi = [70.68844]\n",
"Data 25: Prediksi = [70.68844]\n",
"Data 26: Prediksi = [70.68844]\n",
"Data 27: Prediksi = [70.68844]\n",
"Data 28: Prediksi = [70.68844]\n",
"Data 29: Prediksi = [70.68844]\n",
"Data 30: Prediksi = [70.68844]\n",
"Data 31: Prediksi = [69.318535]\n",
"Data 32: Prediksi = [69.318535]\n",
"Data 33: Prediksi = [69.318535]\n",
"Data 34: Prediksi = [69.318535]\n",
"Data 35: Prediksi = [69.318535]\n",
"Data 36: Prediksi = [69.39558]\n",
"Data 37: Prediksi = [69.39558]\n",
"Data 38: Prediksi = [69.39558]\n",
"Data 39: Prediksi = [69.318535]\n",
"Data 40: Prediksi = [69.318535]\n",
"Data 41: Prediksi = [54.984215]\n",
"Data 42: Prediksi = [54.984215]\n",
"Data 43: Prediksi = [54.984215]\n",
"Data 44: Prediksi = [54.984215]\n",
"Data 45: Prediksi = [54.984215]\n",
"Data 46: Prediksi = [50.889156]\n",
"Data 47: Prediksi = [50.889156]\n",
"Data 48: Prediksi = [50.889156]\n",
"Data 49: Prediksi = [54.984215]\n",
"Data 50: Prediksi = [54.984215]\n"
]
}
],
"source": [
"for i, pred in enumerate(y_preds):\n",
" print(f\"Data {i+1}: Prediksi = {pred}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eNA-rm20APn8"
},
"source": [
"#Tuning"
]
},
{
"cell_type": "code",
"execution_count": 250,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "pTknD6ehASj0",
"outputId": "a230eccc-f474-48a5-9e13-775b7367cfef"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data 1: Prediksi = [95.58472]\n",
"Data 2: Prediksi = [95.58472]\n",
"Data 3: Prediksi = [95.58472]\n",
"Data 4: Prediksi = [95.58472]\n",
"Data 5: Prediksi = [95.58472]\n",
"Data 6: Prediksi = [95.58472]\n",
"Data 7: Prediksi = [95.58472]\n",
"Data 8: Prediksi = [95.58472]\n",
"Data 9: Prediksi = [96.007904]\n",
"Data 10: Prediksi = [96.007904]\n",
"Data 11: Prediksi = [86.576454]\n",
"Data 12: Prediksi = [86.576454]\n",
"Data 13: Prediksi = [86.576454]\n",
"Data 14: Prediksi = [86.576454]\n",
"Data 15: Prediksi = [86.576454]\n",
"Data 16: Prediksi = [86.576454]\n",
"Data 17: Prediksi = [86.576454]\n",
"Data 18: Prediksi = [86.576454]\n",
"Data 19: Prediksi = [86.576454]\n",
"Data 20: Prediksi = [86.576454]\n",
"Data 21: Prediksi = [73.77576]\n",
"Data 22: Prediksi = [73.77576]\n",
"Data 23: Prediksi = [73.02384]\n",
"Data 24: Prediksi = [73.02384]\n",
"Data 25: Prediksi = [73.02384]\n",
"Data 26: Prediksi = [73.02384]\n",
"Data 27: Prediksi = [73.02384]\n",
"Data 28: Prediksi = [73.02384]\n",
"Data 29: Prediksi = [73.02384]\n",
"Data 30: Prediksi = [73.02384]\n",
"Data 31: Prediksi = [66.95867]\n",
"Data 32: Prediksi = [66.95867]\n",
"Data 33: Prediksi = [66.95867]\n",
"Data 34: Prediksi = [66.95867]\n",
"Data 35: Prediksi = [66.95867]\n",
"Data 36: Prediksi = [66.1415]\n",
"Data 37: Prediksi = [66.1415]\n",
"Data 38: Prediksi = [66.1415]\n",
"Data 39: Prediksi = [66.95867]\n",
"Data 40: Prediksi = [66.95867]\n",
"Data 41: Prediksi = [51.689125]\n",
"Data 42: Prediksi = [51.689125]\n",
"Data 43: Prediksi = [51.689125]\n",
"Data 44: Prediksi = [51.689125]\n",
"Data 45: Prediksi = [51.689125]\n",
"Data 46: Prediksi = [51.19272]\n",
"Data 47: Prediksi = [51.19272]\n",
"Data 48: Prediksi = [51.19272]\n",
"Data 49: Prediksi = [51.689125]\n",
"Data 50: Prediksi = [51.689125]\n"
]
}
],
"source": [
"for i, pred in enumerate(y_preds_tuning):\n",
" print(f\"Data {i+1}: Prediksi = {pred}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "78_9QUE4wZGK"
},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

96
detect2.py Normal file
View File

@ -0,0 +1,96 @@
import tflite_runtime.interpreter as tflite
import numpy as np
import as7265x
import smbus
import joblib
import RPi.GPIO as GPIO
from luma.core.interface.serial import i2c
from luma.core.render import canvas
from luma.oled.device import ssd1306
from time import sleep
# ======================== Load TF Model ========================
interpreter = tflite.Interpreter(model_path="model.tflite")
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print("Input details:", input_details)
print("Output details:", output_details)
# ======================== Load Scalers ========================
scaler_X = joblib.load('scaler_X.pkl')
scaler_y = joblib.load('scaler_y.pkl')
# ======================== GPIO Button Setup ========================
BUTTON_PIN = 22 # Gunakan GPIO 22
GPIO.setmode(GPIO.BCM)
GPIO.setup(BUTTON_PIN, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
# ======================== Create Sensor Instance ========================
i2c_bus = smbus.SMBus(1)
sensor = as7265x.AS7265X(i2c_bus)
# ======================== OLED Display Setup ========================
serial = i2c(port=1, address=0x3C)
device = ssd1306(serial, rotate=0)
# ======================== Scan Function ========================
def scan():
sensor.begin()
sensor.enableBulb(as7265x.LED_WHITE)
sensor.enableBulb(as7265x.LED_IR)
sensor.enableBulb(as7265x.LED_UV)
sensor.setIntegrationCycles(1)
sensor.takeMeasurements()
data = [
sensor.getCalibratedA(), sensor.getCalibratedB(), sensor.getCalibratedC(),
sensor.getCalibratedD(), sensor.getCalibratedE(), sensor.getCalibratedF(),
sensor.getCalibratedG(), sensor.getCalibratedH(), sensor.getCalibratedR(),
sensor.getCalibratedI(), sensor.getCalibratedS(), sensor.getCalibratedJ(),
sensor.getCalibratedT(), sensor.getCalibratedU(), sensor.getCalibratedV(),
sensor.getCalibratedW(), sensor.getCalibratedK(), sensor.getCalibratedL()
]
sensor.disableBulb(as7265x.LED_WHITE)
sensor.disableBulb(as7265x.LED_IR)
sensor.disableBulb(as7265x.LED_UV)
data = np.array(data).reshape(1, -1)
return data
# ======================== Predict Function ========================
def predict(data):
scaled_data = scaler_X.transform(data)
scaled_data = scaled_data.reshape((1, 18, 1))
interpreter.set_tensor(input_details[0]['index'], scaled_data)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
output_original = scaler_y.inverse_transform(output_data)
print("Model output (scaled):", output_data)
print("Model output (original):", output_original)
with canvas(device) as draw:
draw.rectangle(device.bounding_box, outline="white", fill="black")
draw.text((5, 20), "Prediction Result:", fill="white")
draw.text((5, 40), str(np.round(output_original[0], 2)), fill="white")
# ======================== Main Loop ========================
print("Model berhasil diload")
print("Tekan tombol untuk memulai prediksi...")
try:
while True:
if GPIO.input(BUTTON_PIN) == GPIO.HIGH:
print("Tombol ditekan. Memulai scan dan prediksi...")
data = scan()
predict(data)
sleep(1.5) # Debounce delay
except KeyboardInterrupt:
print("Program dihentikan oleh pengguna.")
finally:
GPIO.cleanup()
print("GPIO dibersihkan.")

BIN
model_new.h5 Normal file

Binary file not shown.

BIN
model_new.tflite Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
scaler_X.pkl Normal file

Binary file not shown.

BIN
scaler_y.pkl Normal file

Binary file not shown.

63
scan_with_button.py Normal file
View File

@ -0,0 +1,63 @@
import RPi.GPIO as GPIO
import time
import subprocess
import as7265x
import smbus
import numpy as np
import os
from datetime import datetime
# Konfigurasi sensor
i2c = smbus.SMBus(1)
sensor = as7265x.AS7265X(i2c)
sensor.begin()
sensor.setIntegrationCycles(1)
# Konfigurasi tombol
BUTTON_PIN = 22 # Gunakan GPIO 22
GPIO.setmode(GPIO.BCM)
GPIO.setup(BUTTON_PIN, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
# Meminta input nama folder
folder = input("Masukkan nama folder untuk menyimpan hasil: ")
if not os.path.exists(folder):
os.makedirs(folder)
# Fungsi untuk melakukan scanning
def scan_and_save():
print("Scanning...")
sensor.enableBulb(as7265x.LED_WHITE)
sensor.enableBulb(as7265x.LED_IR)
sensor.enableBulb(as7265x.LED_UV)
sensor.takeMeasurements()
data = [
sensor.getCalibratedA(), sensor.getCalibratedB(), sensor.getCalibratedC(),
sensor.getCalibratedD(), sensor.getCalibratedE(), sensor.getCalibratedF(),
sensor.getCalibratedG(), sensor.getCalibratedH(), sensor.getCalibratedR(),
sensor.getCalibratedI(), sensor.getCalibratedS(), sensor.getCalibratedJ(),
sensor.getCalibratedT(), sensor.getCalibratedU(), sensor.getCalibratedV(),
sensor.getCalibratedW(), sensor.getCalibratedK(), sensor.getCalibratedL()
]
sensor.disableBulb(as7265x.LED_WHITE)
sensor.disableBulb(as7265x.LED_IR)
sensor.disableBulb(as7265x.LED_UV)
# Simpan hasil ke dalam file
filename = datetime.now().strftime("%Y-%m-%d-%H-%M-%S") + ".txt"
file_path = os.path.join(folder, filename)
with open(file_path, "w") as file:
file.write(";".join(map(str, data)))
print(f"Data telah disimpan di {file_path}")
try:
print("Tekan tombol untuk memulai scanning...")
while True:
if GPIO.input(BUTTON_PIN) == GPIO.HIGH:
scan_and_save()
time.sleep(1) # Hindari pemicuan berulang cepat
except KeyboardInterrupt:
print("Keluar...")
GPIO.cleanup()